Cho ∆ABC (AB < AC). Đường trung trực của BC cắt BC tại E và cắt AC tại F. Lấy điểm M bất kỳ trên đường thẳng d (M ≠ F). So sánh chu vi ∆AFB và chu vi ∆AMB đúng là
A. Chu vi ∆AFB nhỏ hơn chu vi ∆AMB;
B. Chu vi ∆AFB lớn hơn chu vi ∆AMB;
C. Chu vi ∆AFB bằng chu vi ∆AMB;
Hướng dẫn giải
Đáp án đúng là: A
Ta có: FE là đường trung trực của BC (giả thiết)
⇒ FB = FC (tính chất đường trung trực)
M thuộc đường trung trực của BC ⇒ MB = MC (tính chất đường trung trực)
Chu vi ∆AFB = AB + AF + FB = AB + AF + FC = AB + AC
Chu vi ∆AMB = AB + AM + MB = AB + AM + MC
Xét ∆AMC có: AM + MC > AC (bất đẳng thức tam giác)
Do đó: AB + AC < AB + AM + MC
Hay chu vi ∆AFB nhỏ hơn chu vi ∆AMB.
Cho ∆ABC cân tại A. Tia phân giác của góc B và góc C cắt cạnh AC, AB lần lượt ở D và E. Đoạn thẳng có độ dài bằng đoạn thẳng BE là
Cho khác góc bẹt, lấy điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho OA = OB. Lấy M là trung điểm của AB. Khẳng định nào dưới đây đúng?
Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.
Cho ∆ABC cân tại A. Trên 2 cạnh AB và AC lấy hai điểm M và N sao cho AM = AN. So sánh BN với BC + MN đúng là
Cho ∆ABC có . M là điểm nằm giữa B và C. Vẽ điểm E sao cho AB là trung trực của ME, Điểm F sao cho AC là trung trực của MF. Khẳng định nào dưới đây sai?
Cho ∆ABC cân tại A, trên các cạnh AB, AC lần lượt lấy hai điểm P và Q sao cho AP = AQ. Hai đoạn thẳng CP và BQ cắt nhau tại O. OH và OK lần lượt là khoảng cách từ O đến AB và AC. Khẳng định nào dưới đây sai?
Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Khẳng định sai là
Cho ∆ABC nhọn có đường cao BD và CE. Trên tia đối của tia BD lấy điểm I sao cho BI = AC. Trên tia đối của tia CE lấy điểm K sao cho CK = AB. Chọn câu đúng nhất.
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Biết . Số đo góc ACB là