Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.
A. m=-1
B.
C.
D. Không tồn tại giá trị m.
Đạo hàm
Để hàm số có hai điểm cực trị khi và chỉ khi (*)
Gọi và là hai điểm cực trị của đồ thị hàm số.
Khi đó theo định lí Viet, ta có
Yêu cầu bài toán : không thỏa mãn .
Nhận xét. Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị. Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.
Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba khi và chỉ khi có hai nghiệm phân biệt ( ) và
Chọn D.
Biết rằng đồ thị hàm số có điểm đại và có điểm cực tiểu . Mệnh đề nào sau đây là đúng?
Gọi là hai điểm cực trị của hàm số . Tìm các giá trị của tham số m để
Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng (-2;3).
Tìm tất cả các giá trị của tham số m để hàm số có đúng một điểm cực trị.
Cho hàm số . Với điều kiện nào của các tham số thì hàm số có ba điểm cực trị?
Tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số bằng
Cho hàm số với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu, đồng thời khoảng cách giữa hai điểm cực tiểu ngắn nhất.
Cho hàm số . Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
Tìm tất cả các giá trị thực của tham số m để hàm số có các điểm cực trị nhỏ hơn 2