Đáp án D
Phương pháp:
Chia ra thành 2 tập hợp: Tập hợp A bao gồm các số lẻ, tập hợp B bao gồm các số chẵn.
Chọn ra 6 phần tử từ 2 tập A, B sao cho tổng các phần tử không chia hết cho 2 khi chọn lẻ phần tử của tập A và lẻ phần tử ở tập B thì tổng các phần tử chọn ra là số lẻ nên không chia hết cho 2.
Cách giải:
Không gian mẫu: \(\Omega = C_{13}^6\) cách chọn.
Tập \(A = \left\{ {1;3;5;7;9;11;13} \right\}\) gồm 7 phần tử bao gồm các số lẻ.
Tập \(B = \left\{ {2;4;6;8;10;12} \right\}\) gồm 6 phần tử bao gồm các số chẵn.
Ta có các cách chọn sau:
+) Chọn 5 phần tử tập A và 1 phần tử ở tập B có: \(C_7^5.C_6^1\) cách chọn.
+) Chọn 3 phần tử tập A và 3 phần tử ở tập B có: \(C_7^3.C_6^3\) cách chọn.
+) Chọn 1 phần tử tập A và 5 phần tử ở tập B có: \(C_7^1.C_6^5\) cách chọn.
Xác suất thỏa mãn là: \(\frac{{C_7^5.C_6^1 + C_7^3.C_6^3 + C_7^1.C_6^5}}{{C_{13}^6}} = \frac{{217}}{{429}}\).
Tìm số hạng không chứa x trong khai triển của biểu thức \({\left( {{x^2} - \frac{2}{{{x^2}}}} \right)^n}\) biết
\(3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\) với \(n \in {\mathbb{N}^*},x \ne 0\).