Cho hàm số \(y = f\left( x \right)\), có bảng xét dấu \(f'\left( x \right)\) như sau:
Hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên khoảng nào dưới đây?
Một vật chuyển động theo quy luật \(S = - \frac{1}{2}{t^3} + 9{t^2},\) với \(t\)(giây) là khoảng thời gian tính từ
Cho hàm số \(f(x)\), có bảng biến thiên của hàm số \(f'(x)\) như sau:
Số cực trị của hàm số \(y = f({x^2} + 2x)\) là
Cho \(S.ABCD\)là hình chóp tứ giác đều, biết \[AB = a,\,\,SA = a\]. Thể tích của khối chóp \(S.ABCD\) bằng
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 0 \right\}\)và có bảng biến thiên như