Tập xác định \(D = \mathbb{R}\backslash \left\{ { - \frac{d}{c}} \right\}\).
Do đường tiệm cận đứng của đồ thị hàm số là \(x = - \frac{d}{c}\) nằm bên phải trục tung nên \( - \frac{d}{c} > 0 \Leftrightarrow cd < 0\). \(\left( 1 \right)\)
Do đường tiệm cận ngang của đồ thị hàm số là \(y = \frac{a}{c}\) nằm phía trên trục hoành nên
\(\frac{a}{c} > 0 \Leftrightarrow ac > 0\). \(\left( 2 \right)\)
Hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đạo hàm \(y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\).
Từ đồ thị, hàm số nghịch biến trên từng khoảng của tập xác định suy ra \(ad - bc < 0\) hay \(ad < bc\)
(loại đáp án D).
Đồ thị hàm số cắt trục hoành tại điểm \(\left( { - \frac{b}{a};0} \right)\), điểm này nằm phía bên trái trục tung nên \( - \frac{b}{a}\left\langle {0 \Leftrightarrow ab} \right\rangle 0\)\(\left( 3 \right)\)(loại đáp án B).
Từ \(\left( 1 \right),\left( 2 \right),\left( 3 \right)\) ta có \(\left\{ {\begin{array}{*{20}{c}}{cd < 0}\\{ac > 0}\\{ab > 0}\end{array}} \right.\), suy ra \(a,b,c\) cùng dấu và \(d\) trái dấu với \(a,b,c\).
Cho hình chóp S.ABCDcó mặt phẳng (SAB)vuông góc với mặt phẳng (ABCD), tam giác SABvuông cân tại S, ABCDlà hình vuông cạnh 2a. Thể tích khối chóp S.ABCDlà
Cho lăng trụ tam giác đều \(ABC \cdot A'B'C'\). Tam giác \(ABC'\)có diện tích bằng \(8\)và hợp với mặt phẳng đáy một góc có số đo \({30^^\circ }\). Tính thể tích của khối lăng trụ.
Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(4{\sin ^2}x - 4\cos x \le 4{m^2} - 4m + 5\)nghiệm đúng với mọi \(x \in \left[ {0;\pi } \right]\) là
Có bao nhiêu giá trị nguyên của tham số\(m\) để hàm số \(y = - \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 2} \right)x + 2019\) đạt cực đại tại \(x = 1\)?
Cho hình chóp S.ABC có đáy là tam giác cân tại A, mặt bên (SBC) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi là mặt phẳng đi qua điểm B và vuông góc với SC, chia khối chóp thành hai phần. Tính tỉ số thể tích của hai phần đó.
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\left[ { - 1;4} \right]\] và có đồ thị như hình vẽ bên. Gọi \[M\] và \[m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên \[\left[ { - 1;4} \right]\]. Giá trị của \[M + 2m\] bằng
Cho khối tứ diện \(ABCD\). Lấy điểm \(M\) nằm giữa \(A\) và \(B\), điểm \(N\) nằm giữa \(C\) và \(D\). Bằng hai mặt phẳng \(\left( {CDM} \right)\) và \(\left( {ABN} \right)\), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?