IMG-LOGO

Câu hỏi:

16/07/2024 104

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?

A. 1

Đáp án chính xác

B. 3

C. 2


D. 0


Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

TH1: \(1 - m = 0\), hàm số có dạng \(y = b{x^2} + c\) có 1 cực tiểu \( \Leftrightarrow b > 0\).

TH2: Hàm số có dạng \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực tiểu và không có cực đại \( \Leftrightarrow a > 0\) và phương trình \(y' = 0\) có đúng 1 nghiệm.

Cách giải:

Tập xác định \(\mathbb{R}\).

Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1\), ta có \(y = 8{x^2} + 1\) có đồ thị là parabol, bề lõm quay lên trên nên hàm số chỉ có 1 cực tiểu và không có cực đại.

Trường hợp 2: \(m - 1 \ne 0 \Leftrightarrow m \ne 1\). Vì hàm số trùng phương nên để hàm số chỉ có cực tiểu mà không có cực đại thì \(m < 1\) và phương trình \(y' = 0\) có đúng một nghiệm.

Vậy ta có \(4\left( {1 - m} \right){x^3} + 4\left( {m + 3} \right)x = 0 \Leftrightarrow \left( {1 - m} \right){x^3} + \left( {m + 3} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\\left( {1 - m} \right){x^2} + m + 3 = 0\end{array} \right.\)

Do \(m < 1\) nên ta có \({x^2} = \frac{{m + 3}}{{m - 1}}\). Phương trình \({x^2} = \frac{{m + 3}}{{m - 1}}\) có một nghiệm \(x = 0\) hoặc vô nghiệm khi và chỉ khi \(\frac{{m + 3}}{{m - 1}} \le 0 \Leftrightarrow - 3 \le m < 1\) (thỏa điều kiện \(m < 1\))

Do đó không có nguyên dương thỏa mãn trong trường hợp này. m

Kết luận: Vậy \(m = 1\) thì hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 28/06/2023 676

Câu 2:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:

Xem đáp án » 28/06/2023 91

Câu 3:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 28/06/2023 91

Câu 4:

Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là

Xem đáp án » 28/06/2023 83

Câu 5:

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\)

Xem đáp án » 28/06/2023 79

Câu 6:

Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox

Xem đáp án » 28/06/2023 70

Câu 7:

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\)\(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Xem đáp án » 28/06/2023 68

Câu 8:

Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

Xem đáp án » 28/06/2023 66

Câu 9:

Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)

Xem đáp án » 28/06/2023 64

Câu 10:

Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?

Xem đáp án » 28/06/2023 63

Câu 11:

Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)

Xem đáp án » 28/06/2023 63

Câu 12:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng

Xem đáp án » 28/06/2023 63

Câu 13:

Cho \(0 < a \ne 1\)\(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 28/06/2023 63

Câu 14:

Thể tích của khối cầu bán kính R bằng:

Xem đáp án » 28/06/2023 62

Câu 15:

Cho \(0 < a \ne 1,\,\,b > 0\) thỏa mãn điều kiện \({\log _a}b < 0\). Khẳng định nào sau đây là đúng?

Xem đáp án » 28/06/2023 61

Câu hỏi mới nhất

Xem thêm »
Xem thêm »