Gọi \(\left( C \right)\) là đồ thị hàm số \(y = {2017^x}\). Mệnh đề nào dưới đây sai?
A. Trục Ox là đường tiệm cận ngang của \(\left( C \right)\)
B. Đồ thị \(\left( C \right)\) nằm hoàn toàn phía trên trục hoành.
C. Đồ thị \(\left( C \right)\) nhận Oy làm đường tiệm cận ngang.
D. Đồ thị \(\left( C \right)\) đi qua điểm \(\left( {0;1} \right)\)
Đáp án C
Cách giải:
Đồ thị hàm số \(y = {2017^x}\,\left( C \right)\) nhận trục Ox là đường tiệm cận ngang, nằm hoàn toàn phía trên trục hoành và đi qua điểm \(\left( {0;1} \right)\)
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Diện tích toàn phần của một hình hộp chữ nhật là \(S = 8{a^2}\). Đáy của hình hộp là hình vuông cạnh a. Tính thể tích V của khối hộp theo a.
Cho \(a = {\log _2}m\) với \(m > 0,\,\,m \ne 1\). Đẳng thức nào dưới đây đúng?
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Cho hàm số \(y = {x^4} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm giá trị của m để đồ thị \(\left( {{C_m}} \right)\) có 3 điểm cực trị, đồng thời 3 điểm cực trị đó tạo thành một tam giác có diện tích bằng 4.
Cho hình nón có độ dài đường sinh là l, độ dài đường cao là h và r là bán kính đáy. Công thức tính diện tích xung quanh của hình nón.
Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh bằng 3, đường chéo AB’ của mặt bên \(\left( {ABB'A'} \right)\) có độ dài bằng 5. Tính thể tích V của khối lăng trụ ABCD.A'B'C'D' .
Cho hàm số \(y = {x^3} - x - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung.
Tìm tập các giá trị của tham số m để hàm số \(y = - {x^3} + 3m{x^2} - 3\left( {2m - 1} \right)x + 1\) có 2 điểm cực trị.
Cho khối nón đỉnh O trục OI, bán kính đáy bằng a và chiều cao bằng \(\frac{a}{2}\). Mặt phẳng \(\left( P \right)\) thay đổi luôn đi qua O và cắt hình nón theo thiết diện là tam giác AOB. Diện tích lớn nhất của tam giác AOB là:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Có bao nhiêu giá trị của tham số m để phương trình \({x^3} + 3{x^2} - m = 0\) có hai nghiệm phân biệt?