Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F
a. Chứng minh tứ giác MECF là hình chữ nhật và EF là tiếp tuyến chung của (I) và (K)
b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.
c. Khi C khác O, đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d. Chứng minh 3 điểm: N, E, F thẳng hàng
a) Ta thấy MEC và MFC là các tam giác vuông chung cạnh huyền MC nên MECF nội tiếp đường tròn đường kính MC.
Dễ thấy MECF là hình chữ nhật (Tứ giác có 3 góc vuông) nên
Lại có
Hoàn toàn tương tự FE là tiếp tuyến đường tròn (K). Vậy EF là tiếp tuyến chung của hai đường tròn.
b) MECF là hình chữ nhật nên EF = MC.
Do EI và FK cùng vuông góc với EF nên IEFK là hình thang vuông.
với H là điểm chính giữa cung AB.
Vậy để diện tích IEFK lớn nhất thì C nằm chính giữa cung AB. Khi đó
c) Ta thấy (Hai góc nội tiếp cùng chắn cung MF) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung CF)
d) Do
Mà hay NPEA là tứ giác nội tiếp.
Tương tự PFBN cũng là tứ giác nội tiếp.
Vậy thì ta có:
Hay N, E, F thẳng hàng.
Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.
b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.
c) Chứng minh CE = CB.
Một trang trại cân thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?
Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.
b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.
c) Chứng minh CE = CB.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB và AC
a. CMR: ER = AH
b.Kẻ trung tuyến Am của tam giác ABC. C/m: AM⊥ EF
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4cm và HC = 6cm.
a) Tính độ dài các đoạn AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đó góc AMB (làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng minh:
Cho tam giác ABC đều. Gọi M, N lần lượt là các điểm trên cạnh AB, BC sao cho BM = BN. Gọi G là trọng tâm tam giác BMN và I là trung điểm của AN. Tính các góc của tam giác GIC.
Cho tam giác ABC vuông tại A có M là trung điểm của BC
a) cho BC = 10cm tính AM
b) gọi N là trung điểm của AB cho MN // AC
c) kẻ MD // AD chứng minh tứ giác ANMD là hình chữ nhật
Cho tam giác ABC vuông tại A, có AB < AC, trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc BC, DK vuông góc AC.
a) C/m góc BAD = góc BDA
b) C/m AD là phân giác của góc HAC
c) C/m AK = AH
d) C/m AB + AC < BC + AH
Hội khỏe Phù Đổng của trường Trần Phú, lớp 10A có 45 học sinh, trong đó có 25 học sinh thi điền kinh, 20 học sinh thi nhảy xa, 15 học sinh thi nhảy cao, 7 em không tham gia môn nào, 5 em tham gia cả 3 môn. Hỏi số em tham gia chỉ một môn trong ba môn trên là bao nhiêu?
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB và AC
a. CMR: ER = AH
b.Kẻ trung tuyến Am của tam giác ABC. C/m: AM⊥ EF