Cho hàm số có đồ thị (C) và đường thẳng d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?
Phương trình hoành độ giao điểm của (C) và đường thẳng d:
(1)
Khi đó cắt (C) tại hai điểm phân biệt A và B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác 1
(luôn đúng)
Gọi A(x1; x1 + m); B(x2; x2 + m) trong đó x1; x2 là nghiệm của (1), theo Viet ta có:
Gọi là trung điểm của AB, suy ra , nên
Mặt khác
Vậy tam giác ABC đều khi và chỉ khi
<=> 2m2 + 8m − 10 = 0
b) Nếu đường thẳng d nằm ngoài tam giác ABC và G' là hình chiếu của G trên d thì các độ dài AA', BB', CC', GG' có liên hệ gì?
Cho đường tròn (O), đường kính AB, vẽ các tiếp tuyến Ax, By. Từ M trên đường tròn (M khác A,B) vẽ tiếp tuyến thứ ba nó cắt Ax ở C cắt By ở D. Gọi N là giao điểm của BC và AD.
a) CMR:
Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.
a) Chứng minh SO // BD.
Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.
a) CM: CD = AC + BD.
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D)
a) Chứng minh tứ giác AMBO nội tiếp
Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a) Chứng minh M đối xứng với N qua O.
Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
c) Tìm m để đường thẳng (d) tạo với 2 trục tọa độ một tam giác có diện tích bằng 3
Cho tứ giác ABCD có
a) CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn, tìm tâm đường tròn đó.
Tổng của hai số là 19,1. Nếu giảm số hạng thứ nhất đi 4 lần và giữ nguyên số hạng thứ hai thì được tổng mới là 7,4. Tìm hai số đó.
Cho tam giác ABC, trọng tâm G. Vẽ đường thẳng d đi qua G cắt các đoạn thẳng AB, AC. Goi A', B', C' thứ tự là hình chiếu của A, B, C trên d. Tìm liên hệ giữa các độ dài AA', BB', CC'.
Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N.
a) Chứng minh MA2 = MQ.MBMột liên đội thiếu niên khi xếp hàng 2, hàng 3, hàng 4, hàng 5 đều thừa 1 người. Tính số đội viên của liên đội biết rằng số đội viên khoảng từ 100 đến 150?