Tìm giá trị y thỏa mãn 49(y – 4)2 – 9(y + 2)2 = 0.
A. \(\left[ \begin{array}{l}y = \frac{{11}}{5}\\y = \frac{{17}}{2}\end{array} \right.\);
B. \(\left[ \begin{array}{l}y = \frac{{ - 11}}{5}\\y = 6\end{array} \right.\);
C. \(\left[ \begin{array}{l}y = \frac{{11}}{5}\\y = - 6\end{array} \right.\);
D. \(\left[ \begin{array}{l}y = \frac{{ - 11}}{5}\\y = - \frac{{17}}{2}\end{array} \right.\).
Đáp án đúng là: A
Ta có 49(y – 4)2 − 9(y + 2)2 = 0
⇔ 49(y2 − 8y + 16) − (y2 + 4y + 4) = 0
⇔ 49y2 − 392y + 784 – 9y2 − 36y − 36 = 0
⇔ 40y2 − 428y + 748 = 0
⇔ 4(y2 − 107y + 187) = 0
⇔ 4[(10y2 − 22y) − ( 85y − 187)] = 0
⇔ 4[2y(5y − 11) − 17(5y − 11)] = 0
⇔ 4(5y − 11)(2y − 17) = 0
\( \Leftrightarrow \left[ \begin{array}{l}5y - 11 = 0\\2y - 17 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = \frac{{11}}{5}\\y = \frac{{17}}{2}\end{array} \right.\)
Cho hai tập hợp khác rỗng: A = (m – 1; 4], B = (−2; 2m + 2), với m ∈ ℝ. Xác định m để:
a) A ∩ B = Ø;
b) A ⊂ B;
c) B ⊂ A;
d) (A ∩ B) ⊂ (−1; 3).
Cho tam giác ABC có P là trung điểm của AB và hai điểm M, N thỏa các hệ thức: \(\overrightarrow {MB} - 2\overrightarrow {MC} = \overrightarrow 0 \) và \(\overrightarrow {NA} + 2\overrightarrow {NC} = \overrightarrow 0 \). Chứng minh rằng 3 điểm M, N, P thẳng hàng.
Cho hai tập hợp khác rỗng A = (m – 1; 4]; B = (−2; 2m + 2), m ∈ ℝ. Tìm m để A ∩ B ≠ Ø.
Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của
\(Q = \frac{x}{{x + \sqrt {x + yz} }} + \frac{y}{{y + \sqrt {y + zx} }} + \frac{z}{{z + \sqrt {z + xy} }}\).
Tìm giá trị lớn nhất của biểu thức \(A = 11 - \sqrt {{x^2} + 7x + 4} \).
Cho hai hàm số y = x2 và y = mx + 4, với m là tham số. Khi m = 3, tìm tọa độ các giao điểm A, B của hai đồ thị của hai hàm số trên.
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
x |
− ∞ 1 2 3 4 + ∞ |
f’(x) |
− 0 + 0 − 0 − 0 + |
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Trong khai triển (x – 2)100 = a0 + a1x1 + … + a100x100. Tổng hệ số
a0 + a1 + a2 + … + a100 bằng:
Người ta muốn xây một cái bể chứa nước dạng khối hộp chữ nhật không nắp có thể tích \(\frac{{500}}{3}\) m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500 000 đồng/m3. Nếu biết xác định kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất, chi phí thấp nhất đó là:
Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng.
Một bó hoa 12 bông gồm: 5 hoa hồng, 4 hoa lan còn lại là hoa cúc. Chọn ngẫu nhiên 5 bông hoa. Tính xác suất sao cho chọn đủ ba loại và số cúc không ít hơn 2.