Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

29/06/2024 62

Chứng minh rằng x2002 + x2000 + 1 chia hết cho x2 + x + 1.

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có:

A = x2002 + x2000 + 1 = x2002 + x2001 + x2000 − (x2001 1)

= x2000(x2 + x + 1) − [(x3)667 − 1]

= x2000(x2 + x + 1) − (x3 − 1)[(x3)666 + (x3)665 + … + 1]

= x2000(x2 + x + 1) − (x − 1)(x2 + x + 1)[(x3)666 + (x3)665 + … + 1]

= (x2 + x + 1){x2000 − (x − 1)[(x3)666 + (x3)665 + … + 1]}.

Vây x2002 + x2000 + 1 chia hết cho x2 + x + 1.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD // AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.

d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.

Chứng minh: AM.AD = AH.AO.

e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).

Xem đáp án » 03/07/2023 288

Câu 2:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 03/07/2023 279

Câu 3:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 03/07/2023 210

Câu 4:

Cho hàm số bậc nhất y = (m1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).

a) Vẽ đồ thị khi m = 2.

b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).

c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.

Xem đáp án » 03/07/2023 132

Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm.
a) Tính BC, BH, HC, AH
.

b) Kẻ phân giác AD. Tính BD, DC.
c) Tính diên tích tam giác AHD
.

Xem đáp án » 03/07/2023 110

Câu 6:

Cho ΔABC có AB = 4, AC = 6, \(\cos \widehat B = \frac{1}{8}\) \(\cos \widehat C = \frac{3}{4}\). Tính cạnh BC.

Xem đáp án » 03/07/2023 110

Câu 7:

Cho tam giác ABC đều cạnh a và AM là trung tuyến của tam giác. Tính tích vô hướng sau: \(\overrightarrow {AC} \left( {2\overrightarrow {AB} - 3\overrightarrow {AC} } \right)\)

Xem đáp án » 03/07/2023 107

Câu 8:

Xác định hàm số bậc hai thỏa mãn điều kiện.

a) Cho (P): y = ax2 + bx + c. Tìm a, b, c biết (P) đi qua điểm A(1; 2) và có đỉnh I(−1; −2).

b) Tìm hàm số y = ax2 + bx − 3 biết đồ thị có tọa độ đỉnh là \(I\left( {\frac{1}{2};\; - 5} \right)\).

Xem đáp án » 03/07/2023 107

Câu 9:

Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM.

a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn.

b) Chứng minh: ∆AKN = ∆BKM.

c) Chứng minh: AM . BE = AN . AQ.

d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định

Xem đáp án » 03/07/2023 103

Câu 10:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Media VietJack

Số điểm cực trị của hàm số g(x) = x2[f (x 1)]4 là:

Xem đáp án » 03/07/2023 94

Câu 11:

Số đo các góc của một đa giác lồi có 9 cạnh lập thành một cấp số cộng có công sai d = 3°. Tìm số đo của các góc đó

Xem đáp án » 03/07/2023 93

Câu 12:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: ∆OBA vuông tại B và ∆OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn
(O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 03/07/2023 90

Câu 13:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b) AE . AF = AC2.

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.

Xem đáp án » 03/07/2023 86

Câu 14:

Cho 2 đường thẳng: \(\left( {{d_1}} \right):\;y = \frac{1}{2}x + 2\) và (d2): y = −x + 2.

Gọi A, B lần lượt là giao điểm của (d1) và (d2) với trục Ox, C là giao điểm của (d1), (d2). Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm).

Xem đáp án » 03/07/2023 82

Câu 15:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 03/07/2023 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »