Một máy bơm bơm đầy bình nước hết 5 giờ , một máy bơm khác bơm đầy cùng bình đó hết 3 giờ. Hỏi nếu 2 máy bơm cùng nhau thì sau bao lâu thì đầy \(\frac{2}{3}\) bình.
Máy 1 trong 1 giờ bơm được: \(\frac{1}{5}\) bình
Máy 2 trong 1 giờ bơm được: \(\frac{1}{3}\) bình
Hai máy bơm 1h được \(\frac{1}{5} + \frac{1}{3} = \frac{8}{{15}}\) (h)
Vậy muốn bơm \(\frac{2}{3}\) bình thì cần số thời gian là: \(\frac{2}{3}:\frac{8}{{15}} = \frac{5}{4}\left( h \right)\)
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Từ điểm D, vẽ đường thẳng vuông góc với BC cắt AC ở E. Chứng minh rằng AE = AB.
Cho ∆ABC vuông tại A (AB < AC), E là trung điểm của BC. Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O là giao điểm của AE và DF.
a) Chứng minh rằng tứ giác ADEF là hình chữ nhật.
b) Gọi K là điểm đối xứng của E qua D. Chứng minh tứ giác AECK là hình thoi.
c) Chứng minh rằng ba điểm B, O, K thẳng hàng.
d) Kẻ EM vuông góc với AK tại M. Chứng minh: \(\widehat {DMF} = 90^\circ \).
Cho tam giác nhọn ABC, vẽ các đường cao BD, CE.
a) Chứng minh rằng: ∆ADB đồng dạng với ∆AEC.
b) Chúng minh rằng: ∆ADE đồng dạng với ∆ABC.
c) Vẽ EF vuông góc với AC tại F. Chứng minh rằng: AE.DF = AF.BE.
d) Gọi M, N lần lượt là trung điểm của các doạn thắng BD, CE. Chứng minh rằng: Hai góc BAC và MAN có chung tia phân giác.
Một vật hình hộp chữ nhật có kích thước (30×20×10 cm).
a) Tính thể tích của vật.
b) Tính lực đẩy Ác – si – mét tác dụng lên vật khi thả đứng nó vào trong chất lỏng có trọng lượng riêng 12000 N/m3. Biết khi đó chiều cao của vật bị chìm trong chất lỏng là 20 cm.
Nếu tam giác ABC có 3 góc thỏa mãn sinA = cosB + cosC thì tam giác ABC là tam giác gì ?
Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đo là số dương.
Hai tổ cùng làm một công việc nếu làm chúng thì hoàn thành trong 15 giờ. Nếu tổ 1 làm trong 5 giờ, tổ 2 làm trong 3 giờ thì đuợc 30% công việc. Hỏi nếu làm 1 mình thì mỗi tổ làm trong bao lâu ?
Một hình chữ nhật có cạnh này bằng \(\frac{2}{3}\) cạnh kia. Nếu bớt đi mỗi cạnh 5m thì diện tích hình chữ nhật đó giảm đi 16%. Tính kích thước của hình chữ nhật đó ?
Tính chiều cao CH của tháp ở bên kia sông biết AB = 25 m, \(\widehat {HAC} = 32^\circ \), \(\widehat {HBC} = 43^\circ \), và ba điểm A, B, H thẳng hàng. (kết quả làm tròn đến chữ số thập phân thứ nhất).
Đặt câu:
a) Có cặp quan hệ từ biểu thị mối quan gệ tương phản.
b) Có cặp quan hệ từ biểu thị mối quan hệ nguyên nhân kết quả.
c) Đặt câu sử dụng cặp quan hệ từ biểu thị quan hệ tăng tiến.
Cho tam giác ABC, vẽ AH vuông góc vs BC (H thuộc BC), trên tia AH lấy D sao cho AH = HD. Chứng minh:
a) Tam giác ABH bằng tam giác DBH.
b) AC = CD.
c) Qua A kẻ đg thẳng song song vs BD cắt BC tại E. Chứng minh H là trung điểm của BE.
Cho tam giác OAB vuông tại A, OA = 3 cm, AB = 4 cm, đường cao AH (H thuộc OB)
a) Tính AH.
b) Vẽ đường tròn (O; OA) cắt tia AH tại C. Chứng minh: CB là tiếp tuyến của đường tròn (O; OA).
Cho các hàm số y = x + 1 có đồ thị là d1 và y = – x + 3 có đồ thị là d2.
a) Vẽ đồ thị hai hàm số trên trên cùng một mặt phẳng tọa độ.
b) Gọi A, B lần lượt là giao điểm của d1, d2 với trục hoành và C là giao điểm của d1 và d2. Hãy tìm tọa độ các điểm A, B và C.