Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 57

Tìm x nguyên thỏa mãn \(\frac{{x + 5}}{{x + 2}}\) là số nguyên.

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đặt \(A = \frac{{x + 5}}{{x + 2}}\)

Ta có \(A = \frac{{x + 5}}{{x + 2}} = \frac{{x + 2 + 3}}{{x + 2}} = 1 + \frac{3}{{x + 2}}\)

Với x nguyên, để A nguyên thì \(\frac{3}{{x + 2}}\) nguyên

Media VietJack

Suy ra x {– 5; – 3; – 1; 1}

Vậy x {– 5; – 3; – 1; 1}.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC . BD = R2.

c) Kẻ MH vuông góc AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Xem đáp án » 18/07/2023 437

Câu 2:

Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ  AH vuông góc với BC. Từ H vẽ HM vuông góc với AB và HN vuông góc với AC (H BC, M AB, N AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O; R) tại K

a) Chứng minh tứ giác AMHN nội tiếp.

b) Chứng minh AE vuông góc với MN.

c) Chứng minh AH = AK.

Xem đáp án » 18/07/2023 305

Câu 3:

Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E.

a) Chứng minh rằng chu vi tam giác ADE bằng 2AB.

b) \(\widehat {DOE} = \frac{1}{2}\widehat {BOC}\).

Xem đáp án » 18/07/2023 213

Câu 4:

Cho nửa đường tròn (O; R) đường kính AB. Trên đoạn OB lấy điểm H sao cho HB = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa (O) tại D. Vẽ đường tròn (S) đường kính AO cắt AD tại C.

a) Chứng minh C là trung điểm của AD.

b) Chứng minh 4 điểm C, D, H, O cùng thuộc một đường tròn.

c) CB cắt DO tại E. Chứng minh BC là tiếp tuyến của (S).

d) Tính diện tích tam giác AEB theo R.

Xem đáp án » 18/07/2023 189

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Tìm giao điểm Q của SD và (MNP).

Xem đáp án » 18/07/2023 138

Câu 6:

Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.

a) Tứ giác OCAB là hình gì? Vì sao?

b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.

Xem đáp án » 18/07/2023 122

Câu 7:

Cho tam giác ABC nhọn (AB < AC), đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Tính AH, MH biết AM = 8 cm; BM = 2 cm.

Xem đáp án » 18/07/2023 120

Câu 8:

Cho hình bình hành ABCD tâm O. Gọi M là 1 điểm bất kỳ. Chứng minh

a) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {M{\rm{D}}} = 4\overrightarrow {MO} \)

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} = 2\overrightarrow {AC} \).

Xem đáp án » 18/07/2023 96

Câu 9:

Cho hàm số y = 2x + 3.

a) Vẽ đồ thị hàm số trên.

b) Gọi A, B là giao điểm của đồ thị với các trục tọa độ. Tính diện tích tam giác OAB (O là gốc tọa độ và đơn vị trên các trục tọa độ là cm).

c) Tính góc tạo bởi đường thẳng y = ax + b và trục Ox.

Xem đáp án » 18/07/2023 90

Câu 10:

Cho đường tròn (O; 2cm) và một điểm A chạy trên đường tròn đó. Từ A vẽ tiếp tuyến xy. Trên tia Ax lấy điểm M sao cho \[{\rm{A}}M = 2\sqrt 3 \]cm. Hỏi điểm M di động trên đường nào khi A chạy trên (O).

Xem đáp án » 18/07/2023 86

Câu 11:

Chứng minh rằng với mọi giá trị của m:

a) Phương trình: mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.

b) Phương trình: \(({m^2} + 5){x^2} - \left( {\sqrt 3 m - 2} \right)x + 1 = 0\) luôn vô nghiệm.

Xem đáp án » 18/07/2023 74

Câu 12:

Tìm tất cả giá trị thực của tham số m để tập hợp (1; m) chứa đúng hai số nguyên dương.

Xem đáp án » 18/07/2023 71

Câu 13:

Cho tam giác ABC \(\widehat {BAC} = 60^\circ \), phân giác AD. Chứng minh hệ thức \(\frac{{\sqrt 3 }}{{A{\rm{D}}}} = \frac{1}{{AB}} + \frac{1}{{AC}}\).

Xem đáp án » 18/07/2023 68

Câu 14:

Cho 2 hàm số bậc nhất: y = mx + 3 và y = (2m + 1)x 5. Tìm giá trị m để đồ thị của hai hàm số đã cho là:

a) hai đường thẳng song song.

b) hai đường thẳng cắt nhau.

Xem đáp án » 18/07/2023 66

Câu 15:

Cho \(\cos a = - \frac{2}{5}\). Tính các giá trị lượng giác còn lại của góc a biết a (0; 2π).

Xem đáp án » 18/07/2023 64

Câu hỏi mới nhất

Xem thêm »
Xem thêm »