Chứng minh rằng. nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.
Do p là số nguyên tố lẻ nen p = 3k ± 1 hoặc p = 3k
Nếu p = 3k ± 1 thì
8p2 + 1 = 8(3k ± 1)2 + 1 = 3(24k2 ± 16k + 3) 3, là một hợp số (loại)
Nếu p = 3k do p là số nguyên nên p = 3
Khi đó 8p2 + 1 = 8.9 + 1 =73 là số nguyên tố,
8p2 + 2p + 1 = 72 + 6 + 1 = 791 là một số nguyên tố.
Vậy ta có điều phải chứng minh.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4 cm, HC = 9 cm.
a) Tính độ dài DE.
Cho tam giác ABC vuông tại A và AB = AC. Trên cạnh AB, AC lấy hai điểm D và E sao cho AD = AE. Từ A và D kẻ đường thẳng vuông góc với BE cắt BC tại M và N. Tia ND cắt CA ở I. Chứng minh A là trung điểm của CI.
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN.
Phân tích theo và .
Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.
a) Chứng minh tứ giác BHEK là tứ giác nội tiếp.
Cho đường tròn (O; R) đường kính AB. Điểm C thuộc đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H; kẻ OI vuông góc với AC tại I.
a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn.
Có một ca 1 l và một ca 300 ml. Chỉ dùng hai ca đó, làm thế nào để lấy được 400 ml từ xô nước.
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Gọi (H) là hình tròn xoay thu được khi cho tam giác đều ABC có cạnh a quay quanh AB, tính thể tích khối tròn xoay giới hạn bởi (H).
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0;
P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
Tìm x:
c) −7(3x – 5) + 2(7x – 14) = 28;
d) 5(3 – 2x) + 5(x – 4) = 6 – 4x.
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H ∈ BC). Cho biết
AB = 13 cm, AH = 12 cm, HC = 16 cm. Tính độ dài các cạnh AC, BC.
Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Cho a là góc tù và . Tính giá trị của biểu thức:
A = 2sina − cosa.