Tìm x, biết:
a) (8x2 – 4x) : (−4x) – (x + 2) = 8;
b) (2x4 – 3x3 + x2) : (−x2) + 4(x – 1)2 = 0.
a) (8x2 – 4x) : (−4x) – (x + 2) = 8
−2x + 1 – x – 2 = 8
−3x = 9
x = −3.
Vậy x = −03.
b) (2x4 – 3x3 + x2) : (−x2) + 4(x – 1)2 = 0
−2x2 + 3x – 1 + 4x2 – 8x + 4 = 0
2x2 – 5x + 3 = 0
2x2 – 2x – (3x – 3) = 0
2x(x – 1) – 3(x – 1) = 0
(x – 1)(2x – 3) = 0
x – 1 = 0 hoặc 2x – 3 = 0
x = 1 hoặc
Vậy .
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4 cm, HC = 9 cm.
a) Tính độ dài DE.
Cho tam giác ABC vuông tại A và AB = AC. Trên cạnh AB, AC lấy hai điểm D và E sao cho AD = AE. Từ A và D kẻ đường thẳng vuông góc với BE cắt BC tại M và N. Tia ND cắt CA ở I. Chứng minh A là trung điểm của CI.
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN.
Phân tích theo và .
Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.
a) Chứng minh tứ giác BHEK là tứ giác nội tiếp.
Cho đường tròn (O; R) đường kính AB. Điểm C thuộc đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H; kẻ OI vuông góc với AC tại I.
a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn.
Có một ca 1 l và một ca 300 ml. Chỉ dùng hai ca đó, làm thế nào để lấy được 400 ml từ xô nước.
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Gọi (H) là hình tròn xoay thu được khi cho tam giác đều ABC có cạnh a quay quanh AB, tính thể tích khối tròn xoay giới hạn bởi (H).
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0;
P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
Tìm x:
c) −7(3x – 5) + 2(7x – 14) = 28;
d) 5(3 – 2x) + 5(x – 4) = 6 – 4x.
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H ∈ BC). Cho biết
AB = 13 cm, AH = 12 cm, HC = 16 cm. Tính độ dài các cạnh AC, BC.
Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Cho a là góc tù và . Tính giá trị của biểu thức:
A = 2sina − cosa.