Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

29/06/2024 74

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với t ℤ và 0 < t ≤ 365.

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)

Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

Trả lời:

verified Giải bởi Vietjack

Để thành phố A có đúng 12 giờ có ánh sáng mặt trời thì:

\(3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 12\)

\( \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\)

\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow t - 80 = 182k\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow t = 80 + 182k\,\,\left( {k \in \mathbb{Z}} \right)\)

Do t ℤ và 0 < t ≤ 365 nên ta có:

\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < 80 + 182k \le 365\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - 80 < 182k \le 285\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{{40}}{{91}} < k \le \frac{{285}}{{182}}\end{array} \right. \Leftrightarrow k \in \left\{ {0;1} \right\}\]

Với k = 0 thì t = 80 + 182.0 = 80;

Với k = 1 thì t = 80 + 182.1 = 262.

Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình:

2cos3x + 5 = 3;

Xem đáp án » 03/08/2023 115

Câu 2:

Dùng đồ thị hàm số y = sinx, y = cosx để xác định số nghiệm của phương trình:

3sinx + 2 = 0 trên khoảng \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\);

Xem đáp án » 03/08/2023 111

Câu 3:

Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu. Khi người chơi đu nhún đều, cây đu sẽ đưa người chơi đu dao động quanh vị trí cân bằng (Hình 38). Nghiên cứu trò chơi này, người ta thấy khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian t (s) (với t ≥ 0) bởi hệ thức h = |d| với \(d = 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right]\), trong đó ta quy ước d > 0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d < 0 trong trường hợp ngược lại (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020). Vào thời gian t nào thì khoảng cách h là 3 m, 0 m?

Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu (ảnh 1)

Xem đáp án » 03/08/2023 94

Câu 4:

Tìm góc lượng giác x sao cho cosx = cos(‒87°).    

Xem đáp án » 03/08/2023 91

Câu 5:

Giải phương trình:

\[\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\].

Xem đáp án » 03/08/2023 84

Câu 6:

Quan sát các giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 (Hình 35).

Có nhận xét gì về nghiệm của phương trình tanx = 1 (ảnh 1)

Có nhận xét gì về nghiệm của phương trình tanx = 1?

Xem đáp án » 03/08/2023 80

Câu 7:

Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức \(h = 550 + 450\cos \frac{\pi }{{50}}t\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?

Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip Hình 32. Độ  (ảnh 1)

Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.

Xem đáp án » 03/08/2023 79

Câu 8:

Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số y = cosx, x [‒π; π] tại hai giao điểm C0, D (Hình 34). Tìm hoành độ của hai giao điểm C0, D.

Đường thẳng dy = 1/2 cắt đồ thị hàm số y = cosx, x thuộc [-pi, pi] tại hai giao điểm C0 (ảnh 1)

Xem đáp án » 03/08/2023 78

Câu 9:

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với t ℤ và 0 < t ≤ 365.

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)

Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

Xem đáp án » 03/08/2023 74

Câu 10:

Giải phương trình \(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right)\).

Xem đáp án » 03/08/2023 73

Câu 11:

Giải phương trình:

\(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\);

Xem đáp án » 03/08/2023 73

Câu 12:

Giải phương trình:

\({\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\).

Xem đáp án » 03/08/2023 73

Câu 13:

Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số y = cosx, x [π; 3π] tại hai giao điểm C1, D (Hình 34). Tìm hoành độ của hai giao điểm C1, D.

Xem đáp án » 03/08/2023 71

Câu 14:

Tìm góc lượng giác x sao cho tanx = tan67°.

Xem đáp án » 03/08/2023 70

Câu 15:

Tìm góc lượng giác x sao cho cotx = cot(‒83°).

Xem đáp án » 03/08/2023 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »