Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

29/06/2024 94

Tính:

A = \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\);

Trả lời:

verified Giải bởi Vietjack

Do \(\cos \frac{{7\pi }}{8} = \cos \left( {\pi - \frac{\pi }{8}} \right) = - \cos \left( { - \frac{\pi }{8}} \right) = - \cos \frac{\pi }{8}\);

\(\cos \frac{{5\pi }}{8} = \cos \left( {\pi - \frac{{3\pi }}{8}} \right) = - \cos \left( { - \frac{{3\pi }}{8}} \right) = - \cos \frac{{3\pi }}{8}\).

Nên A = \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\)

= \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\left( { - \cos \frac{{3\pi }}{8}} \right)^2} + {\left( { - \cos \frac{\pi }{8}} \right)^2}\)

\( = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\cos }^2}\frac{{3\pi }}{8}} \right)\)

\( = 2\left[ {{{\cos }^2}\frac{\pi }{8} + {{\sin }^2}\left( {\frac{\pi }{2} - \frac{{3\pi }}{8}} \right)} \right]\)

\( = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\sin }^2}\frac{\pi }{8}} \right) = 2.1 = 2\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tan x = − 2. Tính giá trị của biểu thức sau:

\(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\).

Xem đáp án » 04/08/2023 110

Câu 2:

Chứng minh rằng:

sin6 x + cos6 x = 1 – 3sin2 x cos2 x.

Xem đáp án » 04/08/2023 99

Câu 3:

Tính:

B = \(\sin \frac{\pi }{5} + \sin \frac{{2\pi }}{5} + ... + \sin \frac{{9\pi }}{5}\) (gồm 9 số hạng);

Xem đáp án » 04/08/2023 96

Câu 4:

Một vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút. Tại vị trí quan sát, bạn Linh thấy vòng quay chuyển động theo chiều kim đồng hồ. Khi vòng quay chuyển động được 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng bao nhiêu? (Tính theo đơn vị radian).

Xem đáp án » 04/08/2023 95

Câu 5:

Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\). Tính cos α, tanα, cot α.

Xem đáp án » 04/08/2023 88

Câu 6:

Tính:

C = tan 1° . tan 2° . tan 3°. ... . tan 89° (gồm 89 thừa số).

Xem đáp án » 04/08/2023 86

Câu 7:

Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:

A = sinα . cos α;

Xem đáp án » 04/08/2023 86

Câu 8:

Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:

B = sin α – cos α;

Xem đáp án » 04/08/2023 81

Câu 9:

Chứng minh rằng trong tam giác ABC, ta có:
cosC = - cos(A + B + 2C)

Xem đáp án » 04/08/2023 77

Câu 10:

Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:

D = sin4 α + cos4 α.

Xem đáp án » 04/08/2023 75

Câu 11:

Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:

C = sin³ α + cos³ α;

Xem đáp án » 04/08/2023 73

Câu 12:

Chứng minh rằng:

sin4 x + cos4 x = 1 − 2sin2 x cos2 x;

Xem đáp án » 04/08/2023 72

Câu 13:

Chứng minh rằng trong tam giác ABC, ta có:

\(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\).

Xem đáp án » 04/08/2023 72

Câu 14:

Cho lục giác đều ABCDEF nội tiếp trong đường tròn lượng giác (thứ tự đi từ A đến các đỉnh theo chiều ngược chiều kim đồng hồ). Tính số đo của các góc lượng giác (OA, OB), (OA, OC), (OA, OD), (OA, OE), (OA, OF).

Xem đáp án » 04/08/2023 71

Câu 15:

Chứng minh rằng trong tam giác ABC, ta có:

\(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\);

Xem đáp án » 04/08/2023 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »