Cho tam giác ABC, chứng minh rằng:
\(\tan \frac{A}{2}.\tan \frac{B}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{C}{2}.\tan \frac{A}{2} = 1\).
Ta có \(\frac{{A + B + C}}{2} = \frac{\pi }{2}\), suy ra \(\frac{A}{2} + \frac{B}{2} = \frac{\pi }{2} - \frac{C}{2}\) nên \(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \cot \frac{C}{2}\)
\( \Leftrightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}.\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\)
\( \Leftrightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}.\tan \frac{B}{2}\)
\( \Leftrightarrow \tan \frac{A}{2}.\tan \frac{C}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{A}{2}.\tan \frac{B}{2} = 1\)
\( \Leftrightarrow \tan \frac{A}{2}.\tan \frac{B}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{C}{2}.\tan \frac{A}{2} = 1\).
Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính sin a, cos a, tan a.
Cho \(\sin a = \frac{2}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính:
\(\sin \left( {a + \frac{\pi }{4}} \right),\,\cos \left( {a - \frac{{5\pi }}{6}} \right),\,\tan \left( {a + \frac{{2\pi }}{3}} \right)\);
Cho tam giác ABC, chứng minh rằng:
tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
Cho \(\sin a = \frac{2}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính:
sin 2a, cos 2a.
Trên một mảnh đất hình vuông ABCD, bác An đặt một chiếc đèn pin tại vị trí A chiếu chùm sáng phân kì sang phía góc C. Bác An nhận thấy góc chiếu sáng của đèn pin giới hạn bởi hai tia AM và AN, ở đó các điểm M, N lần lượt thuộc các cạnh BC, CD sao cho BM = \(\frac{1}{2}\)BC, DN = \(\frac{1}{3}\)DC (Hình 4).
Góc chiếu sáng của đèn pin bằng bao nhiêu độ?
Trên một mảnh đất hình vuông ABCD, bác An đặt một chiếc đèn pin tại vị trí A chiếu chùm sáng phân kì sang phía góc C. Bác An nhận thấy góc chiếu sáng của đèn pin giới hạn bởi hai tia AM và AN, ở đó các điểm M, N lần lượt thuộc các cạnh BC, CD sao cho BM = \(\frac{1}{2}\)BC, DN = \(\frac{1}{3}\)DC (Hình 4).
Tính \(\tan \left( {\widehat {BAM} + \widehat {DAN}} \right)\).
Cho \(\sin a = \frac{2}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính:
cos a, tan a;
Cho cos a = 0,2 với π < a < 2π. Tính \(\sin \frac{a}{2}\), \(\cos \frac{a}{2}\), \(\tan \frac{a}{2}\).
Cho cos(a + 2b) = 2cos a. Chứng minh rằng: tan(a + b) tan b = \(\frac{{ - 1}}{3}\).