Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{5^x} - m \ge 0}\end{array}} \right.\) ⇔ \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge {{\log }_5}m}\end{array}} \right.\) (*)
Do m nguyên dương nên m ≥ 1 ⇒ log5m ≥ 0.
Ta có: \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_3}x = 1}\\{{{\log }_3}x = - \frac{1}{2}}\\{{5^x} = m}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = \frac{1}{{\sqrt 3 }}}\\{x = {{\log }_5}m}\end{array}} \right.\)
TH1: m = 1 thì (*) là \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge 0}\end{array}} \right.\) ⇔ x > 0.
Mà m = 1 ⇒ x = log5m = 0 (KTM) nên phương trình đã cho chỉ có hai nghiệm x1 = 3 và \({x_2} = \frac{1}{{\sqrt 3 }}.\)
TH2: m > 1 thì (*) là \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge {{\log }_5}m}\end{array}} \right.\) ⇔ x ≥ log5m.
Do đó phương trình đã cho chắc chắn có nghiệm x1 = log5m.
Do đó để phương trình có hai nghiệm phân biệt thì nó chỉ có thể nhận thêm một trong hai nghiệm x = 3 hoặc \(x = \frac{1}{{\sqrt 3 }}.\)
+) Nếu \(\frac{1}{{\sqrt 3 }} > {\log _5}m\) ⇒ 3 > log5m nên cả hai nghiệm 3 và \(\frac{1}{{\sqrt 3 }}\) đều thỏa mãn ĐK nên phương trình đã cho có 3 nghiệm (loại).
+) Nếu \(\frac{1}{{\sqrt 3 }} = {\log _5}m\) ⇔ \(m = {5^{\frac{1}{{\sqrt 3 }}}} \notin \mathbb{Z}\) nên không xét trường hợp này.
+) Nếu \(\frac{1}{{\sqrt 3 }} < {\log _5}m\) ⇔ \(m > {5^{\frac{1}{{\sqrt 3 }}}}\) thì để phương trình đã cho có hai nghiệm phân biệt thì nghiệm x = 3 phải thỏa mãn 3 > log5m ⇔ m < 53 = 125.
Kết hợp \(m > {5^{\frac{1}{{\sqrt 3 }}}}\) ta được \({5^{\frac{1}{{\sqrt 3 }}}} < m < 125.\)
Mà m ∈ ℤ nên m ∈ {3; 4;...; 124}.
Vậy m ∈ {1; 3; 4;...; 124} nên có 123 giá trị m thỏa mãn.
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).
Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?