Chủ nhật, 02/02/2025
IMG-LOGO

Câu hỏi:

13/07/2024 74

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \(\widehat {BAD} = 60^\circ .\) Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng


A. \(30^\circ .\)



B. \(90^\circ .\)



C. \(60^\circ .\)



D. \(45^\circ .\)


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a (ảnh 1)

Gọi O là tâm hình thoi ABCD, H là trọng tâm tam giác ABD.

Tam giác ABD có: AB = AD (do ABCD là hình thoi), \(\widehat {BAD} = 60^\circ \)

∆ABD đều H là tâm đường tròn ngoại tiếp tam giác.

Hình chóp S.ABD có: SA = SB = SD = a SH (ABD).

Dựng HK // SA (K SC), HI SD (I SD).

Mà HD CD (do \[\widehat {HDC} = \widehat {HDO} + \widehat {ODC} = 30^\circ + 60^\circ = 90^\circ \])

CD (SHD) CD HI.

HI (SCD)

Ta có: \(\left( {\widehat {SA;\,\,\left( {SCD} \right)}} \right) = \left( {\widehat {HK;\,\,\left( {SCD} \right)}} \right) = \left( {\widehat {HK;\,\,KI}} \right) = \widehat {HKI}\)

HK // SA \(\frac{{HK}}{{SA}} = \frac{{HC}}{{AC}} = \frac{2}{3}\) \(HK = \frac{2}{3}a\)

Tứ diện S.ABD đều, có cạnh bằng a

\(\left\{ {\begin{array}{*{20}{c}}{HD = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}}\\{AH = \frac{2}{3}.OA = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}}\\{SH = \sqrt {S{A^2} - A{H^2}} = \frac{{a\sqrt 6 }}{3}}\end{array}} \right.\)

Xét tam giác SHD vuông tại H có:

HI SD \(\frac{1}{{H{I^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{D^2}}} = \frac{1}{{\frac{{2{a^2}}}{3}}} + \frac{1}{{\frac{{{a^2}}}{3}}} = \frac{9}{{2{a^2}}}\) \(HI = \frac{{a\sqrt 2 }}{3}\)

Xét tam giác HIK vuông tại I có:

\(\sin \widehat {HKI} = \frac{{HI}}{{HK}} = \frac{{\frac{{a\sqrt 2 }}{3}}}{{\frac{{2a}}{3}}} = \frac{{\sqrt 2 }}{2}\) \(\widehat {HKI} = 45^\circ \)

\(\left( {\widehat {SA;\,\,\left( {SCD} \right)}} \right) = 45^\circ .\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.

Xem đáp án » 19/08/2023 136

Câu 2:

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD (ảnh 1)

Xem đáp án » 19/08/2023 96

Câu 3:

Cho (O, R), lấy điểm A cách O một khoảng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh tam giác OBA vuông tại B và tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của đường tròn (O).

Xem đáp án » 19/08/2023 91

Câu 4:

Người ta dùng 100m rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được.

Xem đáp án » 19/08/2023 86

Câu 5:

Hỏi có bao nhiêu giá trị m nguyên trong [-2017; 2017] để phương trình log(mx) = 2.log(x + 1) có nghiệm duy nhất?

Xem đáp án » 19/08/2023 83

Câu 6:

Cho hình chóp S.ABC có SA = SB = SC = \(a\sqrt 3 ,\) AB = AC = 2a, BC = 3a. Thể tích của khối chóp S.ABC bằng

Xem đáp án » 19/08/2023 82

Câu 7:

Tìm tất cả các giá trị của tham số m để phương trình x4 – 10x2 + m = 0 có 4 nghiệm phân biệt lập thành một cấp số cộng.

Xem đáp án » 19/08/2023 80

Câu 8:

Tìm tập nghiệm của phương trình \({9^x} - {4.3^x} + 3 = 0.\)

Xem đáp án » 19/08/2023 76

Câu 9:

Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?

Xem đáp án » 19/08/2023 75

Câu 10:

Cho hàm số \(y = x\sqrt {4 - {x^2}} .\) Gọi M, m lần lượt là GTLN, GTNN của hàm số. Tính M + m.

Xem đáp án » 19/08/2023 70

Câu 11:

Tìm tất cả các giá trị của tham số m để phương trình \(4{\left( {{{\log }_2}\sqrt x } \right)^2} - {\log _{\frac{1}{2}}}x\) + m = 0 có nghiệm thuộc khoảng (0; 1).

Xem đáp án » 19/08/2023 70

Câu 12:

Phương trình \(\left( {{2^x} - 5} \right)\left( {{{\log }_2}x - 3} \right) = 0\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right).\) Tính giá trị của biểu thức \(K = {x_1} + 3{x_2}.\)

Xem đáp án » 19/08/2023 69

Câu 13:

Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)

Xem đáp án » 19/08/2023 67

Câu 14:

Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)

Xem đáp án » 19/08/2023 65

Câu 15:

Cho hàm số \(y = {x^3} - 3mx + 1.\) Tìm m để đồ thị hàm số có hai điểm cực trị B và C sao cho tam giác ABC cân tại A, với A(2, 3).

Xem đáp án » 19/08/2023 64

Câu hỏi mới nhất

Xem thêm »
Xem thêm »