Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

04/07/2024 66

Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipid trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipid. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipid. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6kg thịt bò và 1,1kg thịt lợn; giá tiền 1kg thịt bò là 250 nghìn đồng; 1kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (nghìn đồng) là số tiền phải trả cho x kilôgam thịt bò và y kilôgam thịt lợn. Hãy biểu diễn F theo x và y.

c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.

Trả lời:

verified Giải bởi Vietjack

Số kilôgam thịt bò gia đình mua là x (kg); số kilôgam thịt lợn gia đình mua là y (kg). Vì số kilôgam thịt bò mua nhiều nhất là 1,6 kg và số kilôgam thịt lợn mua nhiều nhất là 1,1 kg nên ta có:

0 ≤ x ≤ 1,6; 0 ≤ y ≤ 1,1 (1)

Vì mỗi kilôgam thịt bò có chứa 800 đơn vị protein và mỗi kilôgam thịt lợn có chứa 600 đơn vị protein nên khối lượng protein có trong x kg thịt bò và y kg thịt lợn là: 800x + 600y (đơn vị).

Mà mỗi ngày gia đình cần ít nhất 900 đơn vị protein nên ta có bất phương trình:

800x + 600y ≥ 900 (2)

Vì mỗi kilôgam thịt bò có chứa 200 đơn vị lipid và mỗi kilôgam thịt lợn có chứa 400 đơn vị lipid nên khối lượng lipid có trong x kg thịt bò và y kg thịt lợn là: 200x + 400y (đơn vị).

Mà mỗi ngày gia đình cần ít nhất 400 đơn vị lipid nên ta có bất phương trình:

200x + 400y ≥ 400 (3)

Từ (1); (2); (3) ta có hệ bất phương trình:

\[\left\{ \begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\\800x + 600y \ge 900\\200x + 400y \ge 400\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\\8x + 6y \ge 9\\x + 2y \ge 2\end{array} \right.\]

Ta đi xác định miền nghiệm của hệ bất phương trình.

Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipid trong thức ăn mỗi (ảnh 1)

Miền nghiệm của hệ bất phương trình là tứ giác ABCD có trong hình vẽ trên với tọa độ các đỉnh là A(0,3; 1,1), B(0,6; 0,7), C(1,6; 0,2), D(1,6; 1,1).

b) Số tiền mua một kilôgam thịt bò là 250 nghìn đồng và số tiền mua một kilôgam thịt lợn là 160 nghìn đồng nên số tiền để mua x kg thịt bò và y kg thịt lợn là: F(x; y) = 250x + 160y (nghìn đồng).

c) Người ta đã chứng minh được để số tiền mua ít nhất thì (x; y) là tọa độ của một trong bốn đỉnh tứ giác ABCD.

Ta có: F(x; y) = 250x + 160y. Khi đó:

F(0,3; 1,1) = 250 . 0,3 + 160 . 1,1 = 251;

F(0,6; 0,7) = 250 . 0,6 + 160 . 0,7 = 262;

F(1,6; 0,2) = 250 . 1,6 + 160 . 0,2 = 432;

F(1,6; 1,1) = 250 . 1,6 + 160 . 1,1 = 576;

Suy ra giá trị nhỏ nhất cần tìm là F(0,3; 1,1) = 251.

Vậy để chi phí là ít nhất thì gia đình cần mua 0,3 kilôgam thịt bò và 1,1 kilôgam thịt lợn.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trọng tâm G và hai trung tuyến AM, BN. Biết AM=15, BN = 12 và tam giác CMN có diện tích là \[15\sqrt 3 \]. Tính độ dài đoạn thẳng MN

Xem đáp án » 19/09/2023 181

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?

Xem đáp án » 20/09/2023 136

Câu 3:

Người ta dự định xây dựng một tòa tháp 11 tầng tại một ngôi chùa nọ theo cấu trúc, diện tích của mặt sàn tầng trên bằng nửa diện tích mặt sàn tầng dưới, biết diện tích mặt đáy tháp là 15 m2. Yêu cầu là nền tháp lát gạch hoa kích thước 30x30 (cm). Tính số lượng gạch hoa cần mua để lát sàn tháp.

Xem đáp án » 20/09/2023 129

Câu 4:

Có hai cơ sở khoan giếng A và B. Cơ sở A giá mét khoan đầu tiên là 8000 (đồng) và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 (đồng) so với giá của mét khoan ngay trước đó. Cơ sở B: Giá của mét khoan đầu tiên là 6000 (đồng) và kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm 7% giá của mét khoan ngay trước đó. Một công ty giống cây trồng muốn thuê khoan hai giếng với độ sâu lần lượt là 20 m và 25 m để phục vụ sản xuất. Giả thiết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau. Công ty ấy nên chọn cơ sở nào để tiết kiệm chi phí nhất?

Xem đáp án » 20/09/2023 103

Câu 5:

Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Cứ hết một năm, anh A lại được tăng lương, mỗi tháng năm sau tăng 12% so với mỗi tháng năm trước. Mỗi khi lĩnh lương, anh A đều phải cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 500 triệu, biết rằng anh A được gia đình hỗ trợ 32% giá trị chiếc xe?

Xem đáp án » 20/09/2023 90

Câu 6:

Cho hai đa thức f(x) và g(x) . Xét các tập hợp:

\(A = \left\{ {x \in \mathbb{R}\mid f\left( x \right) = 0} \right\}\)

\(B = \left\{ {x \in \mathbb{R}\mid g\left( x \right) = 0} \right\}\)

\(C = \left\{ {x \in \mathbb{R}\mid \frac{{f\left( x \right)}}{{g\left( x \right)}} = 0} \right\}\)

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 19/09/2023 87

Câu 7:

Bác Bình tham gia chương trình bảo hiểm An sinh xã hội của công ty bảo hiểm với thể lệ như sau: Cứ đến tháng 9 hàng năm bác Bình đóng vào công ty 20 triệu đồng với lãi suất hàng năm không đổi \(6{\rm{\% }}/\) năm. Hỏi sau it nhất bao nhiêu năm bác Bình thu về tổng tất cả số tiền lớn hơn 400 triệu đồng?

Xem đáp án » 20/09/2023 83

Câu 8:

Hai tiếp tuyến tại A và B của đường tròn (O;R) cắt nhau tại M. Nếu \[MA = R\sqrt 3 \] thì góc góc (AOB) bằng:

Xem đáp án » 19/09/2023 83

Câu 9:

Cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \[\frac{{MA}}{{MB}} = \frac{{ND}}{{NC}}\] và I, J lần lượt là trung điểm của AD, BC.

a, Tính vecto IJ theo vecto AB, DC.

b, Chứng minh trung điểm P của MN nằm trên đường thẳng IJ.

Xem đáp án » 19/09/2023 82

Câu 10:

Hình vẽ bên là đồ thị của hàm số \[y = \frac{{ax + b}}{{cx + d}}\]

Hình vẽ bên là đồ thị của hàm số y = (ax + b) / (cx + d) Mệnh đề nào đúng: A. ad > 0 (ảnh 1)

Mệnh đề nào đúng?

Xem đáp án » 19/09/2023 82

Câu 11:

Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 60°. Tính thể tích của khối chóp S.ABCD ?

Xem đáp án » 20/09/2023 76

Câu 12:

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3 ‒ 3x2 ‒ 9x + 35 trên đoạn [‒4; 4]. Giá trị của M và m lần lượt là

Xem đáp án » 19/09/2023 74

Câu 13:

Có bao nhiêu giá trị nguyên của tham số m để hàm số\[y = \sqrt {5 - m\sin x - \left( {m + 1} \right)\cos x} \] xác định trên ℝ?

Xem đáp án » 20/09/2023 72

Câu 14:

Cho hình vuông ABCD cạnh a. Gọi E là điểm đối xứng của D qua C. Tính \[\overrightarrow {AE} \cdot \overrightarrow {AB} \]

Xem đáp án » 20/09/2023 72

Câu 15:

Cho hàm số y = f(x) có đồ thị hàm số như hình dưới đây:

Có tất cả bao nhiêu giá trị nguyên của m để phương trình f(x^3 + 3x^2 - m) - 3= 0 (ảnh 1)

Có tất cả bao nhiêu giá trị nguyên của m để phương trình f(x3 + 3x2 − m) − 3= 0 có nghiệm thuộc đoạn [−1;2]?

Xem đáp án » 20/09/2023 71

Câu hỏi mới nhất

Xem thêm »
Xem thêm »