Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

04/07/2024 65

Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 − 2x + 3 − m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.

Trả lời:

verified Giải bởi Vietjack

Phương trình hoành độ giao điểm của (P) và trục Ox là: x2 − 2x + 3 − m = 0 (1)

¢ = 1 − 3 + m = m − 2.

Ta có parabol (P) cắt trục Ox tại hai điểm A, B phân biệt.

Hay phương trình (1) có 2 nghiệm phân biệt.

Û ∆¢ > 0 Û m − 2 > 0

Û m > 2 (*)

Hai nghiệm là: \(\left[ \begin{array}{l}{x_A} = 1 + \sqrt {m - 2} \\{x_B} = 1 - \sqrt {m - 2} \end{array} \right.\)

Khi đó ta có tọa độ giao điểm \(A\left( {1 + \sqrt {m + 2} ;\;0} \right),\;B\left( {1 - \sqrt {m + 2} ;\;0} \right)\)

Theo đề, ta có \(AB = 2\sqrt {m - 2} = 2\)

\( \Leftrightarrow \sqrt {m - 2} = 1\)

Û m − 2 = 1

Û m = 3

So với (*), nhận m = 3

Vậy m0 = 3 thỏa mãn yêu cầu bài toán.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các mệnh đề sau:

a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).

b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).

c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a

d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.

Số mệnh đề đúng là:

Xem đáp án » 02/10/2023 111

Câu 2:

Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:

a) Có đỉnh I(−2; 37).

b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.

Xem đáp án » 02/10/2023 83

Câu 3:

Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?

Xem đáp án » 02/10/2023 82

Câu 4:

Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x − b có đỉnh I (−1; −5).

Xem đáp án » 02/10/2023 77

Câu 5:

Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.

Xem đáp án » 02/10/2023 77

Câu 6:

Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].

Xem đáp án » 02/10/2023 75

Câu 7:

Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?

Xem đáp án » 02/10/2023 75

Câu 8:

Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?

Xem đáp án » 02/10/2023 75

Câu 9:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?

Xem đáp án » 02/10/2023 72

Câu 10:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem đáp án » 02/10/2023 72

Câu 11:

Cho tam giác ABC có a2 + b2 − c2 > 0. Khi đó:

Xem đáp án » 02/10/2023 72

Câu 12:

Cho bất phương trình 2x + 3y − 6 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 02/10/2023 71

Câu 13:

Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn? 

Xem đáp án » 02/10/2023 71

Câu 14:

Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.

Xem đáp án » 02/10/2023 70

Câu 15:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?

Xem đáp án » 02/10/2023 70

Câu hỏi mới nhất

Xem thêm »
Xem thêm »