Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

07/07/2024 75

Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?


A. \(\overrightarrow {AB} \,.\,\overrightarrow {AC} = \frac{1}{2}{a^2}\);



B. \(\overrightarrow {AC} \,.\,\overrightarrow {CB} = - \frac{1}{2}{a^2}\);



C. \(\overrightarrow {GA} \,.\,\overrightarrow {GB} = \frac{{{a^2}}}{6}\);


Đáp án chính xác


D. \(\overrightarrow {AB} \,.\,\overrightarrow {AG} = \frac{1}{2}{a^2}\).


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Dựa vào đáp án ta có các nhận xét sau:

Xác định được góc \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right)\]\[\widehat A\] nên \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right) = 60^\circ \]

Do đó \(\overrightarrow {AB} \,.\,\overrightarrow {AC} = AB\,.\,AC\,.\,\cos \left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right) = a\,.\,a\,.\,\cos 60^\circ = \frac{1}{2}{a^2}\) nên A đúng

Xác định được góc \[\left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right)\] là góc ngoài của \[\widehat C\] nên \[\left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right) = 120^\circ \]

Do đó \(\overrightarrow {AC} \,.\,\overrightarrow {CB} = AC\,.\,CB\,.\,\cos \left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right) = a\,.\,a\,.\,\cos 120^\circ = - \frac{1}{2}{a^2}\) nên B đúng

Xác định được góc \[\left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right)\]\[\widehat {AGB}\] nên \[\left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right) = 120^\circ \]

Do đó \(\overrightarrow {GA} \,.\,\overrightarrow {GB} = GA\,.\,GB\,.\,\cos \left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right) = \frac{a}{{\sqrt 3 }}\,.\,\frac{a}{{\sqrt 3 }}\,.\,\cos 120^\circ = - \frac{{{a^2}}}{6}\) nên C sai

Xác định được góc \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right)\] là góc ngoài của \[\widehat {GAB}\] nên \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right) = 30^\circ \]

Do đó \(\overrightarrow {AB} \,.\,\overrightarrow {AG} = AB\,.\,AG\,.\,\cos \left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right) = a\,.\,\frac{a}{{\sqrt 3 }}\,.\,\cos 30^\circ = \frac{{{a^2}}}{2}\) nên D đúng

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các mệnh đề sau:

a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).

b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).

c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a

d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.

Số mệnh đề đúng là:

Xem đáp án » 02/10/2023 111

Câu 2:

Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:

a) Có đỉnh I(−2; 37).

b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.

Xem đáp án » 02/10/2023 83

Câu 3:

Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?

Xem đáp án » 02/10/2023 82

Câu 4:

Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.

Xem đáp án » 02/10/2023 77

Câu 5:

Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x − b có đỉnh I (−1; −5).

Xem đáp án » 02/10/2023 76

Câu 6:

Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].

Xem đáp án » 02/10/2023 75

Câu 7:

Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?

Xem đáp án » 02/10/2023 75

Câu 8:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?

Xem đáp án » 02/10/2023 72

Câu 9:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem đáp án » 02/10/2023 72

Câu 10:

Cho tam giác ABC có a2 + b2 − c2 > 0. Khi đó:

Xem đáp án » 02/10/2023 72

Câu 11:

Cho bất phương trình 2x + 3y − 6 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 02/10/2023 71

Câu 12:

Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn? 

Xem đáp án » 02/10/2023 71

Câu 13:

Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.

Xem đáp án » 02/10/2023 70

Câu 14:

Hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70%. Tính xác suất để cả hai người cùng bắn trúng.

Xem đáp án » 02/10/2023 70

Câu 15:

Cho phương trình \(\left( {\log _2^2x - {{\log }_2}\frac{{{x^3}}}{4}} \right)\sqrt {{e^x} - m} = 0\). Gọi S là tập hợp giá trị m nguyên với m Î [−10; 10] để phương trình có đúng 2 nghiệm. Tính tổng giá trị các phần tử của S.

Xem đáp án » 02/10/2023 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »