Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
A. 30°
B. 36°
C. 45°
D. 60°.
Đáp án đúng là: D
Gọi K là trung điểm đoạn AB ; H là chân đường cao kè từ I của tam giác IBC
Hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy nên ta suy ra \(SI \bot (ABCD)\)
Ta có:
\(\begin{array}{l}{S_{ABCD}} = \frac{{(CD + AB).AD}}{2} = \frac{{\left( {a + 2{\rm{a}}} \right).2{\rm{a}}}}{2} = 3{a^2}\\{V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} \Leftrightarrow \frac{{3\sqrt {15} {a^3}}}{5} = \frac{1}{3}.SI.3{{\rm{a}}^2}\\ \Rightarrow SI = \frac{{3\sqrt {15} a}}{5}\end{array}\)
Vì \(\left\{ {\begin{array}{*{20}{l}}{(SBC) \cap (ABCD) = BC}\\{BC \bot (SIH)}\\{(SIH) \cap (SBC) = SH}\\{(SIH) \cap (ABCD) = IH}\end{array}} \right.\) nên góc giữa hai mặt phẳng (SBC) và (ABCD) là \(\widehat {SHI}\)
Vì K là trung điểm của AB nên AK = BK = a
Mà CD = a suy ra AK = CD
Mà AK // CD (vì cùng vuông góc với AD)
Suy ra AKCD là hình bình hành
Lại có \(\widehat {A{\rm{DC}}} = 90^\circ \) nên AKCD là hình chữ nhật
Do đó CK = AD = 2a và \(CK \bot AB\)
Suy ra tam giác CBK vuông tại K. Theo định lý Pytago có
\(BC = \sqrt {B{K^2} + C{K^2}} = \sqrt {{a^2} + 4{{\rm{a}}^2}} = a\sqrt 5 \)
Ta có \[{{\rm{S}}_{IBC}} = {S_{ABC{\rm{D}}}} - {S_{ABI}} - {S_{C{\rm{D}}I}} = 3{{\rm{a}}^2} - \frac{1}{2}.a.2{\rm{a}} - \frac{1}{2}.a.a = \frac{3}{2}{a^2}\]
\({S_{IBC}} = \frac{1}{2}IH.BC \Rightarrow IH = \frac{{2{{\rm{S}}_{IBC}}}}{{BC}} = \frac{{3{{\rm{a}}^2}}}{{a\sqrt 5 }} = \frac{{3a}}{{\sqrt 5 }}\)
Xét tam giác SHI có:
\(\tan \widehat {SHI} = \frac{{SI}}{{HI}} = \frac{{\frac{{3\sqrt {15} a}}{5}}}{{\frac{{3{\rm{a}}}}{{\sqrt 5 }}}} = \sqrt 3 \)
Suy ra \(\widehat {SHI} = 60^\circ \)
Do đó giữa hai mặt phẳng (SBC) và (ABCD) là 60°
Vậy ta chọn đáp án D.
Trong mặt phẳng α cho tứ giác ABCD, điểm E ∉ (α). Hỏi có bao nhiêu mặt phẳng phân biệt tạo bởi ba trong năm điểm A, B, C, D, E?
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:
Cho tứ giác lồi ABCD và điểm S không thuộc mp(ABCD). Có bao nhiêu mặt phẳng phân biệt xác định bởi 3 trong số các điểm A, B, C, D, S?
Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:
Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.
Hai xạ thủ cùng bắn vào một tấm bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70 %. Xác suất hai người cùng bắn trúng là:
Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:
a) Nam và nữ được xếp tùy ý.
b) Nam 1 dãy ghế nữ 1 dãy ghế.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:
Trong không gian cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Cho hình chóp S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là đường thẳng:
Tập nghiệm của bất phương trình \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\) là:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 – 4mx + m2 – 2m trên đoạn [–2; 0] bằng 3. Tính tổng T các phần tử của S.
Cho tập hợp A={1; 2; 3; 4; a; b}. Xét các mệnh đề sau đây:
(I): “3 ∈ A”.
(II): “{3; 4} ∈ A”.
(III): “{a; 3; b} ∈ A”.
Trong các mệnh đề sau, mệnh đề nào đúng?
Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?