Cho góc α thỏa mãn sinα=1213 và π2<α<π. Tính cosα.
Đáp án đúng là: D
Ta có cosα=±1−sin2α=±513π2<α<π→cosα=−513.
Tính độ dài l của cung trên đường tròn có bán kính bằng 20 cm và số đo π16.
Khẳng định nào sau đây là đúng khi nói về “đường tròn lượng giác”?
Cho P=sinπ+α.cosπ−α và Q=sinπ2−α.cosπ2+α. Mệnh đề nào dưới đây là đúng?
Với mọi số thực α, ta có sin9π2+α bằng
Đổi số đo của góc 70° sang đơn vị radian.
Cho góc α thỏa mãn cotα=13. Tính P=3sinα+4cosα2sinα−5cosα.
Cho góc α thỏa mãn sinα+cosα=54. Tính P=sinα.cosα.
Cho góc α thỏa mãn π<α<3π2 và sinα−2cosα=1. Tính P=2tanα−cotα.
Biết A,B,C là các góc của tam giác ABCmệnh đề nào sau đây đúng:
Cho π<α<3π2. Khẳng định nào sau đây đúng?
Tính giá trị biểu thức P=tan10°.tan20°.tan30°.....tan80°.
Bạn An thả một quả bóng cao su từ độ cao 9 m so với mặt đất. Mỗi lần chạm đất quả bóng nảy lên độ cao bằng độ cao của lần rơi trước. Giả sử quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường bóng đã di chuyển (từ lúc bắt đầu thả đến lúc bóng không di chuyển nữa) gần nhất với kết quả nào sau đây?
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản . Tính tổng
Rút gọn \[{\rm{S}} = 1 + {\cos ^2}{\rm{x}} + {\cos ^4}{\rm{x}} + {\cos ^6}{\rm{x}} + .... + {\cos ^{2{\rm{n}}}}{\rm{x}} + ...\]với\[\cos {\rm{x}} \ne \pm 1\]
Cho dãy số (un) với , trong đó a là tham số thực. Tìm a để
Giá trị của giới hạn bằng:
Kết quả của giới hạn là:
Giá trị của giới hạn là:
Giá trị của giới hạn bằng
Có bao nhiêu giá trị nguyên của tham số thuộc khoảng (−10; 10) để