Hình thang ABCD (AB//CD) có AB = 4cm; MN = 6cm với M và N lần lượt là trung điểm của BC và AD. Khi đó độ dài cạnh CD là?
M, N lần lượt là trung điểm của BC và AD nên MN là đường trung bình của hình thang ABCD
⇒ MN = (AB + CD) : 2
⇒ CD = 2MN - AB = 2.6 - 4 = 8 (cm).
Cho hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa hai cạnh bên AD và BC. Chứng minh: OA = OB; OC = OD.
Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC; B và C là hai tiếp điểm và một cát tuyến ADE đến (O).
a) Chứng minh AB2 = AD.AE.
b) Gọi H là giao điểm của OA và BC. Chứng minh tứ giác DEOH nội tiếp, chứng minh HB là tia phân giác của
Cho tam giác ABC nhọn, đường cao AH ; Gọi M; N lần lượt là hình chiếu của H trên AB; AC. Chứng minh: MN = AH.sin
Một số học sinh dự thi học sinh giỏi toán. Nếu xếp 25 học sinh vào một phòng thì còn thừa 5 học sinh chưa có chỗ. Nếu xếp 28 học sinh vào một phòng thì thừa 1 phòng. Tìm số học sinh dự thi?
Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E, trên tia đối của CA lấy điểm F sao cho AD = BE = CF. Chứng minh rằng tam giác DEF đều.
Cho 3 đường thẳng (d1): ; (d2): y = -2x – 4; (d3):
a) Vẽ đồ thị các hàm số trên cùng một trục tọa độ. Nhận xét vị trí của 3 đường thẳng trên.
b) Cho (d2) cắt (d1) và (d3) tại 2 điểm A và B; (d1) cắt trục Ox tại C. Tính diện tích tam giác ABC.
Một lớp học có 28 nam và 24 nữ. Có bao nhiêu cách chia đều số học sinh vào các tổ với số tổ nhiều hơn sao cho số nam trong các tổ bằng nhau và số nữ trong các tổ bằng nhau? Cách chia nào để mỗi tổ có ít học sinh nhất?
Một cột đèn có bóng trên mặt đất dài 8,5m . Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ 38°. Tính chiều cao của cột đèn ? (Kết quả làm tròn đến 1 chữ số thập phân).
Hai số lẻ có tổng là số nhỏ nhất có 4 chữ số và ở giữa hai số lẻ đó có 4 số lẻ tìm hai số đó.
Cho tam giác ABC cân tại A, . Trên AB lấy điểm D sao cho AD = BC. Tính góc