IMG-LOGO

Câu hỏi:

18/07/2024 48

Cho hình chóp S.ABCD, đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm SA, CD. Chứng minh MN // (SBC). 

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD, đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm SA, CD. Chứng minh MN // (SBC).  (ảnh 1)

Trong mp(ABCD) nối AN kéo dài cắt BC kéo dài tại E

Suy ra E  (SBC)

Vì N là trung điểm của CD nên NC = ND

Vì AD // BE nên ANNE=NDNC=1 (Định lí Ta – let)

Suy ra AN = EN

Do đó N là trung điểm của AE

Xét tam giác SAE có

N là trung điểm của AE

M là trung điểm của AS

Suy ra MN là đường trung bình

Do đó MN // SE

Vậy MN // (SBC). 

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Chứng minh

cosA2.cosB2.cosC2=sinA2.sinB2.cosC2+sinA2.cosB2.sinC2+cosA2.sinB2.sinC2

Xem đáp án » 19/02/2024 128

Câu 2:

Từ 1 điểm A ở bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Chứng minh OA là trung trực của đoạn BC.

Xem đáp án » 17/02/2024 93

Câu 3:

Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Tính số đo góc MON^

Xem đáp án » 17/02/2024 85

Câu 4:

Cho góc xOy^. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) AD = BC.

b) DEAB = DECD.

c) OE là tia phân giác của góc xOy.

Xem đáp án » 19/02/2024 79

Câu 5:

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.

Xem đáp án » 17/02/2024 77

Câu 6:

Một ô tô chạy 100km hết 12 lít xăng. Hỏi cần bao nhiêu lít xăng khi ô tô chạy quãng đường thứ nhất 138km và quãng đường thứ hai 162km?

Xem đáp án » 17/02/2024 76

Câu 7:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m

 có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.

Xem đáp án » 19/02/2024 66

Câu 8:

Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh BC.BE.CF = AH3.

Xem đáp án » 19/02/2024 66

Câu 9:

cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB.

a, Chứng minh tam giác BCK đồng dạng tam giác DCH.

b, Chứng minh tam giác CKH đồng dạng tam giác BCA.

c, Chứng minh HK = AC.sinBAD^

d, Tính diện tích của tứ giác AKCH nếu , AB = 4cm, AC = 5cm.

Xem đáp án » 19/02/2024 66

Câu 10:

Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?

Xem đáp án » 25/02/2024 61

Câu 11:

Trên mặt phẳng tọa độ Oxy cho đường thẳng d: y = (2m + 10)x - 4m - 1 và điểm A(-2;3). Tìm m để khoảng cách từ A đến đường thẳng lớn nhất.

Xem đáp án » 19/02/2024 61

Câu 12:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem đáp án » 17/02/2024 58

Câu 13:

Tìm nghiệm nguyên của phương trình 5(xy + yz + zx) = 4xyz.

Xem đáp án » 17/02/2024 58

Câu 14:

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Vẽ tia Ax nằm giữa tia AB và tia AO cắt đường tròn (O) tại hai điểm C và D (C nằm giữa A và D). Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H.

a, Tính tích OH.OA theo R.

b, Chứng minh 4 điểm A, B, M, O cùng thuộc một đường tròn.

c, Gọi E là giao điểm của OM với HB. Chứng minh ED là tiếp tuyến của đường tròn (O;R).

Xem đáp án » 17/02/2024 57

Câu 15:

Cho hình bình hành ABCD. Đặt AB=a, AD=b. Gọi G là trọng tâm của tam giác ABC. Biểu thị các vectơ AG, CG theo hai vectơ a, b

Xem đáp án » 19/02/2024 57

Câu hỏi mới nhất

Xem thêm »
Xem thêm »