Cho tứ diện ABCD; lấy điểm M trên cạnh AB sao cho: . Trên cạnh AC lấy điểm N sao cho MN // (BCD). Tỉ số là
A.
B.
C. 2
D. 3
Đáp án đúng là: B
Giả sử MN cắt BC tại P.
Ta có BC ⊂ (BCD) nên đường thẳng MN cắt (BCD) tại P (mâu thuẫn với đề bài MN // (BCD)).
Do đó MN // BC.
Xét tam giác ABC có MN // BC, theo định lí Thalès ta có
hay .
Cho a và b là hai đường thẳng chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hình bình hành ABCD và điểm S không nằm trên (ABCD). Gọi E, F, G và H lần lượt là trung điểm của AB, CD, SA và SD. Mặt phẳng song song với đường thẳng EF là
Cho hình chóp S.ABC; gọi G; H là trọng tâm tam giác SAC và SBC. Gọi M là trung điểm của BC. Đường thẳng song song với (ABC) là
Cho hình bình hành ABCD và một điểm S không nằm trên (ABCD), E và F là hai điểm trên SA; SB sao cho: . Vị trí tương đối giữa EF và (ABCD) là
D. EF và (ABCD) chéo nhau.
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. Trên BC lấy điểm E sao cho EB = 2EC. Vị trí tương đối của EG và (ACD) là
Cho hình bình hành ABCD và điểm S không nằm trên (ABCD). O là giao điểm của AC và BD. I là trung điểm của SC. Đường thẳng song song với (SAB) là
Cho tứ diện ABCD. Gọi E, E lần lượt là trung điểm của AB, AC. Vị trí tương đối của EF và (BCD) là
Cho tứ diện ABCD. Gọi E, F là trọng tâm các tam giác ACD và ABD. Vị trí tương đối của EF và ABC là
Cho tứ diện ABCD. G là trọng tâm của tam giác ABD; M nằm trên AB sao cho AM = 2MB. Vị trí tương đối của MG và (BCD) là