Cho a = ln2 và b = ln5. Giá trị của biểu thức theo a và b là
Đáp án đúng là: A
Ta có:
= ln1 – ln2 + ln2 – ln3 + … + ln98 – ln99 + ln99 – ln100
= ln1 – ln100 = 0 – ln102 = –2ln10
= –2ln(2.5) = –2(ln2 + ln5)
= –2(a + b).
Vậy I = –2(a + b), với a = ln2 và b = ln5.
Giá trị của biểu thức D = log4 2 . log6 4 . log8 6 = , (với là phân số tối giản và a, b ∈ ℕ*). Khi đó a2 + b2 bằng