Cho hình thang ABCD (AB // CD) có AB = 1cm, CD = 5cm và = 30°, = 60°. Tính diện tích hình thang ABCD.
Kẻ đường cao AH và đường cao BK ⇒ AB = HK = 1cm
Nên ta có: DH + CK = 4 (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có:
AH = tan60°. DH
BK = tan 30°. CK
Nên: tan60°. DH = tan30°. CK (2)
Từ (1) và (2) giải ra ta được: DH = 1cm, CK = 3cm.
Suy ra: AH = tan60°. DH =
SABCD = .
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho hàm số y= f(x). Đồ thị hàm số y= f’(x) như hình dưới và f(-2) = f( 2) = 0.
Hàm số g( x) = [f(3 - x)]2 nghịch biến trên khoảng nào trong các khoảng sau?
A. (- 2; -1).
B. (1; 2).
C. (2; 5).
D. ( 5 ; +∞).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).