Xác định tính đúng sai của các mệnh đề sau và tìm mệnh đề phủ định của nó.
Q: “∃n ∈ ℕ, n chia hết cho n + 1”.
Với n = 0, n + 1 = 1, khi đó 0 chia hết cho 1.
Suy ra mệnh đề Q là mệnh đề đúng.
Mệnh đề phủ định của mệnh đề Q là: : “∀n ∈ ℕ, n không chia hết cho n + 1”.
Đây là mệnh đề sai.
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho hàm số y= f(x). Đồ thị hàm số y= f’(x) như hình dưới và f(-2) = f( 2) = 0.
Hàm số g( x) = [f(3 - x)]2 nghịch biến trên khoảng nào trong các khoảng sau?
A. (- 2; -1).
B. (1; 2).
C. (2; 5).
D. ( 5 ; +∞).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).
Cho a, b, c là các số thực dương thỏa mãn log2a + log8b + log32c = 10 và . Tính log4(abc).