Chọn khẳng định đúng trong các khẳng định sau:
A. Trong không gian, hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.
B. Trong không gian, hai đường thẳng vuông góc với nhau thì phải cắt nhau.
C. Trong không gian, hai đường thẳng không có điểm chung thì song song với nhau.
D. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
Chọn A
Cho hình chóp $S.ABC$ có $SC$ vuông góc với $\left( {ABC} \right)$. Góc giữa $SA$ với $\left( {ABC} \right)$ là góc giữa
Cho \[a > 0\], \[a \ne 1\]. Biểu thức \[{a^{{{\log }_a}{a^2}}}\] bằng
Thể tích của khối lăng trụ có diện tích đáy bằng 9, chiều cao bằng 2 là
Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau Mệnh đề nào dưới đây đúng?
Cho $a$ là số thực dương, $m \in \mathbb{Z},n \in \mathbb{N},n \geqslant 2.$ Khẳng định nào sau đây sai?
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)$.
Qua điểm \[O\] cho trước, có bao nhiêu mặt phẳng vuông góc với đường thẳng $\Delta $ cho trước?
Cho hình chóp \[S.ABCD\] có \[SA \bot \left( {ABCD} \right)\] đáy \[ABCD\] là hình thoi cạnh $a$ và $AC = a$. Số đo góc nhị diện \[\left[ {B,SA,D} \right]\] bằng