Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. Chọn khẳng định sai?
B. \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {SAB} \right).\]
C. \[B\] là chiếu vuông góc của \[C\] lên \[\left( {SAB} \right).\]
D. \[D\] là chiếu vuông góc của \[C\] lên \[\left( {SAD} \right).\]
Chọn B
Cho hình chóp $S.ABC$ có $SC$ vuông góc với $\left( {ABC} \right)$. Góc giữa $SA$ với $\left( {ABC} \right)$ là góc giữa
Thể tích của khối lăng trụ có diện tích đáy bằng 9, chiều cao bằng 2 là
Cho \[a > 0\], \[a \ne 1\]. Biểu thức \[{a^{{{\log }_a}{a^2}}}\] bằng
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)$.
Qua điểm \[O\] cho trước, có bao nhiêu mặt phẳng vuông góc với đường thẳng $\Delta $ cho trước?
Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau Mệnh đề nào dưới đây đúng?
Cho $a,\,\,b > 0$ và $a \ne 1$. Trong các mệnh đề sau, mệnh đề nào sai?