Cho một bàn dài có 10 ghế và 10 học sinh trong đó có 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp chỗ ngồi cho 10 học sinh sao cho:
a) Nam, nữ ngồi xen kẽ nhau?
b) Những học sinh cùng giới thì ngồi cạnh nhau?
a) Sắp xếp 5 học sinh nữ có 5! cách
Khi đó, giữa các bạn nữ có 6 khoảng trống
Sắp xếp các bạn nam vào những khoảng trống đó có cách.
⇒ Có cách xếp nam nữ xen kẽ
b) Coi 5 học sinh nữ là một nhóm và 5 học sinh nam là một nhóm
⇒ Mỗi nhóm có 5! cách sắp xếp
Sắp xếp hai nhóm với nhau có 2 cách
⇒ Có 5!.5!.2 = 28800 cách sắp xếp những học sinh cùng giới thì ngồi cạnh nhau.
Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].
Cho hình thoi ABCD có cạnh a, có . Gọi O là giao điểm của 2 đường chéo. Tính
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O; R) có BC là đường kính và AC = R. Kẻ dây AD vuông góc với BC tại H.
a) Tính độ dài các cạnh AB, AH theo R;
Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3, 5, 7. Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu.
Một người đi ô tô trong 2 giờ đầu, mỗi giờ đi được 42,5 km; trong 4 giờ sau, mỗi giờ đi được 46,25 km. Hỏi trên cả quãng đường, trung bình mỗi giờ người đó đi được bao nhiêu ki – lô – mét?
Theo kế hoạch, đội sản xuất phải trồng 15 ha rừng trong một năm.
a) Nửa năm đầu đội đã trồng được 7,8 ha rừng. Hỏi trong nửa năm đầu đội đã thực hiện được bao nhiêu phần trăm kế hoạch cả năm?
Một số nếu giảm đi 6 lần rồi thêm 25,71 thì được 88,5. Tìm số đó.
Tính chu vi và diện tích của một hình chữ nhật có chiều dài 7,2 cm và chiều rộng kém chiều dài 3,55 cm.
Cho 1 số tự nhiên gồm các số tự nhiên liên tiếp nhau từ 1 đến 2021 được viết theo thứ tự 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 2019 2020 2021 tính tổng các chữ số đó.
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
Với mỗi số nguyên dương n, kí hiệu Sn là tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).
Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.