Chọn ngẫu nhiên một số từ tập các số tự nhiên có năm chữ số đôi một khác nhau. Xác suất để số được chọn trong đó có mặt 2 chữ số chẵn và 3 chữ số lẻ.
Gọi số tự nhiên có 5 chữ số có dạng
Số phần tử của không gian mẫu là: n(Ω) = 9 . 9 . 8 . 7 . 6 = 27216 (để lập ra số có 5 chữ số đôi một khác nhau thì a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn, e có 6 cách chọn)
Trong {0; 1; 2; 3; …; 9} có 5 chữ số chẵn; 5 chữ số lẻ
Gọi E là tập hợp các số tự nhiên có 5 chữ số trong đó có 2 chữ số chẵn và 3 chữ số lẻ.
TH1: Có chữ số 0
Xếp chữ số 0 có 4 cách (vì a khác 0)
Chọn 1 chữ số chẵn từ 4 chữ số chẵn còn lại và sắp xếp có
Chọn 3 chữ số chẵn từ 5 chữ số lẻ và sắp xếp có
Khi đó lập được:
TH2: Không có chữ số 0 có:
Chọn 2 chữ số chẵn từ 4 chữ số chẵn còn lại và sắp xếp có
Chọn 3 chữ số chẵn từ 5 chữ số lẻ có
Xếp 5 chữ số có 5!
Khi đó lập được:
Suy ra: n(E) = .
Vậy xác suất cần tìm là: .
Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].
Cho hình thoi ABCD có cạnh a, có . Gọi O là giao điểm của 2 đường chéo. Tính
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O; R) có BC là đường kính và AC = R. Kẻ dây AD vuông góc với BC tại H.
a) Tính độ dài các cạnh AB, AH theo R;
Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3, 5, 7. Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu.
Một người đi ô tô trong 2 giờ đầu, mỗi giờ đi được 42,5 km; trong 4 giờ sau, mỗi giờ đi được 46,25 km. Hỏi trên cả quãng đường, trung bình mỗi giờ người đó đi được bao nhiêu ki – lô – mét?
Một số nếu giảm đi 6 lần rồi thêm 25,71 thì được 88,5. Tìm số đó.
Theo kế hoạch, đội sản xuất phải trồng 15 ha rừng trong một năm.
a) Nửa năm đầu đội đã trồng được 7,8 ha rừng. Hỏi trong nửa năm đầu đội đã thực hiện được bao nhiêu phần trăm kế hoạch cả năm?
Tính chu vi và diện tích của một hình chữ nhật có chiều dài 7,2 cm và chiều rộng kém chiều dài 3,55 cm.
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
Cho 1 số tự nhiên gồm các số tự nhiên liên tiếp nhau từ 1 đến 2021 được viết theo thứ tự 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 2019 2020 2021 tính tổng các chữ số đó.
Với mỗi số nguyên dương n, kí hiệu Sn là tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).
Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.