Xét các số thực dương x, y thỏa mãn . Tìm giá trị lớn nhất Pmax của .
A. 3.
B. 2.
C. 1.
D. 4.
Đáp án C.
Ta có
Khi đó, giả thiết trở thành:
Xét hàm số trên khoảng , có .
Suy ra f(t) là hàm số đồng biến trên mà f[3(x + y)] = f(x2 + y2 + xy + 2)
Biết x1, x2 là hai nghiệm của phương trình và x1, x2 thỏa mãn với a, b là hai số nguyên dương. Tính a + b.
Gọi S là tập hợp tất cả các giá trị của m sao cho và phương trình có nghiệm duy nhất. Tìm số phần tử của S.
Cho số dương a khác 1 và các số thực . Đẳng thức nào sau đây là sai?
Cho số thực dương x, y thỏa mãn log6 x = log9 y = log4 (2x + 2y). Tính tỉ số ?
Biết rằng bất phương trình có tập nghiệm là , với a, b là các số nguyên dương nhỏ hơn 6 và . Tính P = 2a + 3b.
Cho log3 5 = a, log3 6 = b, log3 22 = c. Mệnh đề nào dưới đây đúng?
Tổng các nghiệm của phương trình (x – 1)2.2x = 2x(x2 – 1) + 4(2x–1 – x2) bằng
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
Khi đặt t = log5 x thì bất phương trình trở thành bất phương trình nào dưới đây?
Cho loga x = 2; logb x = 3 với a, b là các số thực lớn hơn 1. Tính .