Trong không gian với hệ tọa độ \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\) có \(A'\left( {1;\,0 & ;\,1} \right)\), \(B'\left( {3;1;\,3} \right)\), \(D'\left( {1;\, - 1;1} \right)\), \(C\left( {3;\,5;\, - 5} \right)\).
a) Tọa độ của vectơ \(\overrightarrow {A'D'} \) là \(\left( {0; - 1;0} \right)\).
b) Gọi tọa độ của điểm \(B\) là \(\left( {{x_B};\,{y_B};{z_B}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {BC} \) là:
\(\left( {{x_B} - 3;{y_B} - 5;{z_B} + 5} \right)\).
c) Tọa độ của điểm \(B\) là \(\left( {3;6; - 5} \right)\).
d) Tọa độ của vectơ tổng \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {DD'} \) là \(\left( { - 2;\, - 7;6} \right)\).
a) Đ, b) S, c) Đ, d) Đ.
Hướng dẫn giải
– Ta có: \(\overrightarrow {A'D'} = \left( {1 - 1; - 1 - 0;1 - 1} \right) = \left( {0; - 1;0} \right)\). Do đó, ý a) đúng.
– Gọi tọa độ của điểm \(B\) là \(\left( {{x_B};\,{y_B};{z_B}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {BC} \) là:
\(\left( {3 - {x_B};5 - {y_B}; - 5 - {z_B}} \right)\).
Do đó, ý b) sai.
– Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(\overrightarrow {BC} = \overrightarrow {A'D'} \).
Suy ra \(\left\{ \begin{array}{l}3 - {x_B} = 0\\5 - {y_B} = - 1\\ - 5 - {z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 3\\{y_B} = 6\\{z_B} = - 5\end{array} \right.\). Vậy \(B\left( {3;6; - 5} \right)\). Do đó, ý c) đúng.
– Ta có: \(\overrightarrow {DD'} = \overrightarrow {BB'} \). Khi đó, theo quy tắc hình hộp, ta có:
\(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {DD'} \)\( = \overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD'} \).
Tọa độ của vectơ \(\overrightarrow {BD'} \) là \(\left( { - 2;\, - 7;6} \right)\).
Vậy tọa độ của vectơ tổng \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {DD'} \) là \(\left( { - 2;\, - 7;6} \right)\). Do đó, ý d) đúng.
Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.
Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?
Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá \(30\,000\) đồng một chiếc và mỗi tháng cơ sở bán được trung bình \(3\,000\) chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhuận tốt hơn. Sau khi tham khảo thị trường, người quản lí thấy rằng nếu từ mức giá \(30\,000\) đồng mà cứ tăng thêm \(1\,000\) đồng thì mỗi tháng sẽ bán ít hơn \(100\) chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là \(18\,000\) đồng. Hỏi cơ sở sản xuất phải bán với giá mới là bao nhiêu nghìn đồng để đạt lợi nhuận lớn nhất?
Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:
Cho hình chóp \(S.ABC\) có \(SA = SB = SC = AB = AC = 1\) và \(BC = \sqrt 2 \).
a) \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SC} \).
b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = \sqrt 2 \).
c) \(\overrightarrow {SC} \cdot \overrightarrow {AB} = \frac{1}{2}\).
d) \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{1}{2}\).
Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 9x + 3}}{{x + 1}}\) là đường thẳng:
Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) = - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.
Phát biểu nào sau đây là đúng?
Trong không gian với hệ tọa độ \[Oxyz\], cho vectơ \(\overrightarrow u = 4\overrightarrow i - \overrightarrow j + 6\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow u \) là:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
b) Hàm số đã cho có \(3\) điểm cực trị.
c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(3\).
d) Phương trình \(f\left( x \right) + 3 = 0\) có 4 nghiệm.
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị hàm số như hình vẽ dưới đây.
Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\,2} \right]\) bằng bao nhiêu?
Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).
a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].
b) Hàm số đã cho đạt cực đại tại \(x = 4\).
c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 1\).
d) Có \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.
Cho tứ diện \(ABCD\). Gọi \(E,\,F\) là các điểm lần lượt thuộc các cạnh \(AB,\,CD\) sao cho \(AE = \frac{1}{3}AB,\,CF = \frac{1}{3}CD\). Khi biểu diễn vectơ \(\overrightarrow {EF} \) theo ba vectơ \(\overrightarrow {AB} ,\,\overrightarrow {AD} ,\,\overrightarrow {BC} \) ta được: \(\overrightarrow {EF} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{d}\overrightarrow {AD} + \frac{r}{s}\overrightarrow {BC} \) (với \(\frac{a}{b},\,\frac{c}{d},\,\frac{r}{s}\) là các phân số tối giản và \(a,b,c,d,r,s \in \mathbb{Z}\)). Ta tính được giá trị của biểu thức \(M = \frac{a}{b} + \frac{c}{d} + \frac{r}{s}\) bằng \(\frac{x}{y}\) (với \(\frac{x}{y}\) là phân số tối giản và \(x,\,y \in \mathbb{Z}\)). Khi đó, giá trị của biểu thức \(P = x + y\) bằng bao nhiêu?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.
Phát biểu nào dưới đây là đúng?
Chọn khẳng định sai. Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có: