A. Với hai vectơ bất kì và số thực , ta có .
B. Với hai vectơ bất kì và số thực , ta có .
C. Với hai vectơ bất kì và số thực , ta có .
D. Với hai vectơ bất kì và số thực , ta có .
Đáp án đúng là: A
Theo lý thuyết, ta có: với hai vectơ bất kì và số thực , ta có .
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực tạo với nhau một góc và có độ lớn lần lượt là 9 N và 4 N, lực vuông góc với mặt phẳng tạo bởi hai lực và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí . Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.
Cho hàm số có đồ thị như hình vẽ.
Trong các số có bao nhiêu số có giá trị dương?
Cho hàm số có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hàm số liên tục trên và có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số có đồ thị như hình dưới đây.
Giá trị nhỏ nhất của hàm số đã cho trên đoạn là:
Cho hàm số có đồ thị như hình dưới đây.
Đường tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
Cho hàm số có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Cho hàm số .
a) Hàm số đã cho nghịch biến trên .
b) Hàm số đã cho đạt cực đại tại .
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là .
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Cho tứ diện có đôi một vuông góc và . Gọi là trung điểm của .
a) .
b) .
c) .
d) .
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số liên tục trên và có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?