Đáp án đúng là: B
TXĐ của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {{x^2} - x + 9} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 8}}{{{{\left( {x - 1} \right)}^2}}}\); \(y' = 0\) khi \(x = - 2\) hoặc \(x = 4\).
Bảng xét dấu:
Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {4; + \infty } \right)\), nghịch biến trên các khoảng \(\left( { - 2;1} \right)\) và \(\left( {1;4} \right)\).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Khi đó:
a) \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {B'D} \).
b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD} \).
c) \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = 2a\).
d) Với \(M,\,N\) lần lượt là trung điểm của \(AD,\,BB'\) thì \(\cos \left( {\overrightarrow {MN} ,\,\,\overrightarrow {AC'} } \right) = \frac{{\sqrt 2 }}{3}\).
Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\) và \(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường \(BC = 8\) km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Khoảng thời gian ngắn nhất để người đàn ông đến \(B\) là bao nhiêu giờ (làm tròn kết quả đến hàng phần mười)?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Giá trị cực đại của hàm số đã cho là \( - 1\).
c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).
d) Đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Cho một tấm nhôm hình vuông cạnh 12 cm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \(x\) (cm), rồi gập tấm nhôm lại để được một cái hộp có dạng hình hộp chữ nhật không có nắp (tham khảo hình vẽ).
Giá trị của \(x\) bằng bao nhiêu centimét để thể tích của khối hộp đó là lớn nhất?
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ dưới đây.
Khẳng định nào sau đây là đúng?
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + n}}\) (với \(a \ne 0\)) có đồ thị là đường cong như hình dưới đây.
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
b) Hàm số đã cho đạt cực đại tại \(x = - 3\); đạt cực tiểu tại \(x = - 1\).
c) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(y = - 2\).
d) Công thức xác định hàm số đã cho là \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Khi đó:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \).
b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
c) \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).
d) \(\overrightarrow {GS} = 3\overrightarrow {OG} \).
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có đồ thị như sau:
Phát biểu nào dưới đây là đúng?
Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?
Cho hàm số \[y = f\left( x \right)\] xác định và liên tục trên \(\left[ { - 2;\,3} \right]\) và có bảng xét dấu như sau:
Hàm số đã cho đạt cực đại tại điểm