IMG-LOGO

Câu hỏi:

26/10/2024 7

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong bốn hàm số ở các phương án A, B, C, D. 

A. \(y = \frac{{ - {x^2} + 1}}{x}\).

Đáp án chính xác

B. \(y = \frac{{ - 2x + 1}}{{2x + 2}}\).

C. \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\).

D. \(y = {x^3} - 3{x^2}\).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Quan sát hình vẽ, ta thấy đây là dáng của đồ thị hàm số phân thức bậc hai trên bậc nhất, do đó ta loại phương án B và D.

Mặt khác, ta thấy đường thẳng \(x = 0\) (trục tung) là tiệm cận đứng của đồ thị hàm số đã cho, do vậy ta chọn phương án A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm ở v trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.

Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 16

Câu 2:

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) lần lượt là trọng tâm của các tam giác \(ABC\), \(ABD\). Khi đó ta có \(\overrightarrow {EF}  = \frac{a}{b}\overrightarrow {CD} \) (với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\)). Giá trị của biểu thức \(M = a - b\) bằng bao nhiêu?

Xem đáp án » 26/10/2024 12

Câu 3:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{ax + 1}}{{bx + c}}\) (\(a,\,b,\,c\) là các tham số) có bảng biến thiên như sau:

a) Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số đã cho có \(2\) điểm cực trị.

c) Trên khoảng \(\left( {2; + \infty } \right)\), giá trị lớn nhất của hàm số đã cho bằng \(1\).

d) Giá trị của biểu thức \(a + b + c\) bằng \(0\)

Xem đáp án » 26/10/2024 11

Câu 4:

Một chất điểm chuyển động theo phương trình \(s = f\left( t \right) = 0,5\cos \left( {2\pi t} \right)\), trong đó \(s\) tính bằng mét, \(t\) tính bằng giây. Gia tốc lớn nhất của chất điểm bằng bao nhiêu mét trên giây (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 11

Câu 5:

Hai con tàu \[A\]\(B\) đang ở cùng một vĩ tuyến và cách nhau 5 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \[A\] chạy về hướng Nam với vận tốc 6 hải lí/giờ, còn tàu \[B\] chạy về vị trí hiện tại của tàu \[A\] với vận tốc 7 hải lí/giờ (tham khảo hình vẽ). Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 10

Câu 6:

Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\).

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\)\(\left( {0; + \infty } \right)\).

b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung.

c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x =  - 1\); đường tiệm cận xiên là \(y =  - x + 2\).

d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.

Xem đáp án » 26/10/2024 9

Câu 7:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB\, = a\), \(AA' = a\sqrt 2 \).

a) \(\overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {CC'} \).

b) \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).

c) \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \frac{{{a^2}}}{2}\).

d) \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Xem đáp án » 26/10/2024 9

Câu 8:

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; - 2; - 4} \right)\)\(B\left( {2;0;5} \right)\).

a) \(\overrightarrow {OA}  = 3\overrightarrow i  - 2\overrightarrow j  - 4\overrightarrow k \).

b) Tọa độ của vectơ \(\overrightarrow {AB} \)\(\left( {1; - 2; - 9} \right)\).

c) Điểm \(B\) nằm trong mặt phẳng \(\left( {Oxz} \right)\).

d) Cho vectơ \(\overrightarrow u  = \left( {1;3; - 7} \right)\), khi đó điểm \(C\) thỏa mãn \(\overrightarrow {AC}  = \overrightarrow u \) có tọa độ là \(\left( {4;1; - 11} \right)\).

Xem đáp án » 26/10/2024 9

Câu 9:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 1\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(A = 2a + b\) là bao nhiêu?

Xem đáp án » 26/10/2024 8

Câu 10:

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {1;2; - 1} \right),\,B\left( {2; - 1;3} \right)\), \(C\left( { - 2;3;3} \right)\). Điểm \(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\). Giá trị của biểu thức \(P = {a^2} + {b^2} - {c^2}\) bằng bao nhiêu?

Xem đáp án » 26/10/2024 8

Câu 11:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số đã cho có tiệm cận đứng và tiệm cận ngang lần lượt là các đường thẳng:

Xem đáp án » 26/10/2024 8

Câu 12:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\sqrt 2 \). Góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {A'C'} \) bằng:

Xem đáp án » 26/10/2024 7

Câu 13:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có đồ thị là đường cong như hình dưới đây.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 26/10/2024 7

Câu 14:

Hàm số đã cho có bao nhiêu điểm cực đại?  

Xem đáp án » 26/10/2024 6

Câu 15:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên trên \(\left[ { - 5;7} \right)\) như sau:

 

Mệnh đề nào dưới đây là đúng?

Xem đáp án » 26/10/2024 6