Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:
Đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) + 3}}\) có bao nhiêu đường tiệm cận đứng?
Đáp án đúng là: A
Ta có: \(y = \frac{1}{{2f\left( x \right) + 3}}\).
Xét \(2f\left( x \right) + 3 = 0 \Leftrightarrow f\left( x \right) = - \frac{3}{2}\).
Từ bảng biến thiên nhận thấy phương trình \(f\left( x \right) = - \frac{3}{2}\) có hai nghiệm phân biệt\({x_1} \in \left( { - \infty ;0} \right),\)\({x_2} \in \left( {0;1} \right)\).
Do đó đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) + 3}}\) có hai đường tiệm cận đứng.
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Hàm số \(y = f(x)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ dưới đây.
Tìm giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;2} \right]\).
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng: