Hàm số \(y = f'\left( x \right)\) có đồ thị hàm số như hình vẽ.
Khẳng định nào sau đây là đúng?
Đáp án đúng là: A
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\), ta có:
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = a \in \left( { - 2; - 1} \right)\\x = 0\\x = b \in \left( {1;2} \right).\end{array} \right.\)
Từ đồ thị, ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:
Vậy hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;0} \right).\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Hàm số \(y = f(x)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ dưới đây.
Tìm giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;2} \right]\).
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng: