Đáp án đúng là: B
Gọi \(H\) là trung điểm của \(BC\).
Ta có: \(AH = A'H = \frac{{a\sqrt 3 }}{2}\) và \(AH \bot BC,A'H \bot BC\) \( \Rightarrow BC \bot \left( {AA'H} \right) \Rightarrow BC \bot AA'\) hay \(BC \bot BB'\). Do đó, \(BCC'B'\) là hình chữ nhật.
Khi đó, \(CC' = AA' = \frac{{a\sqrt 3 }}{2}.\sqrt 2 = \frac{{a\sqrt 6 }}{2}\) \( \Rightarrow BM = \sqrt {{a^2} + \frac{{{a^2}.6}}{{16}}} = \frac{{a\sqrt {22} }}{4}\).
Xét \(\overrightarrow {AA'} .\overrightarrow {BM} = \overrightarrow {AA'} .\left( {\overrightarrow {BC} + \overrightarrow {CM} } \right) = \overrightarrow {AA'} .\overrightarrow {BC} + \overrightarrow {AA'} .\overrightarrow {CM} = 0 + \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {CM} } \right|.\cos 0^\circ = \frac{{3{a^2}}}{4}.\)
Suy ra \(\cos \alpha = \cos \left( {\overrightarrow {AA'} ,\overrightarrow {BM} } \right) = \frac{{\overrightarrow {AA'} .\overrightarrow {BM} }}{{\left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {BM} } \right|}} = \frac{{\frac{{3{a^2}}}{4}}}{{\frac{{a\sqrt 6 }}{2}.\frac{{a\sqrt {22} }}{4}}} = \frac{{\sqrt {33} }}{{11}}.\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Hàm số \(y = f(x)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ dưới đây.
Tìm giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;2} \right]\).
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng: