Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {3;0;1} \right)\) và \(\overrightarrow c = \left( {1;1;0} \right)\). Tọa độ của vectơ \(\overrightarrow b \) thỏa mãn đẳng thức \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \) là
A. \(\left( {5;3; - 9} \right).\)
B. \(\left( {1; - 2;1} \right)\)
C. \(\left( { - 3; - 7; - 9} \right).\)
D. \(\left( { - 1; - 2;1} \right)\)
Đáp án đúng là: B
Ta có: \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \) hay \(\overrightarrow b = \overrightarrow a - 2\overrightarrow c + \overrightarrow 0 \).
Có: \(\overrightarrow a = \left( {3;0;1} \right)\), \(2\overrightarrow c = \left( {2;2;0} \right)\), \(\overrightarrow 0 = \left( {0;0;0} \right)\).
Do đó, \(\overrightarrow b = \overrightarrow a - 2\overrightarrow c + \overrightarrow 0 = \left( {1; - 2;1} \right)\)
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 m. Chọn hệ trục \(Oxyz\) với O là gốc đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \[Oy\] hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.
Khi đó:
a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).
b) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).
c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} \) km.
d) Khoảng cách hai chiếc khinh khí cầu là 3,92 km (Kết quả làm tròn đến hàng phần trăm).
Số khẳng định đúng trong các khẳng định trên là:
Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;2;1} \right)\) và \(B\left( {3; - 2;1} \right)\). Độ dài đoạn thẳng \(AB\) bằng
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;1; - 1} \right)\), \(B\left( {1;2;0} \right)\), \(\left( {m;n;0} \right)\). Giá trị \(m,n\) sao cho ba điểm \(A,B,C\) thẳng hàng:
Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 2;2} \right)\) và \(N\left( {1;0;4} \right)\). Tọa độ trung điểm của đoạn thẳng \(MN\) là
I. Nhận biết
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = \left( { - 2;6;2} \right)\). Vectơ \(\frac{3}{2}\overrightarrow a \) có tọa độ là
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2; - 5} \right)\), \(B\left( {1;2;4} \right)\), \(C\left( {2;5; - 2} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1;2;3} \right)\), \(\overrightarrow b = \left( {4;5;6} \right)\). Tọa độ vectơ \(\overrightarrow a + \overrightarrow b \) là
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( { - 1 - 1;0} \right)\) và \(\overrightarrow b = \left( {0; - 1;0} \right)\). Góc giữa hai vectơ này là:
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng
Trong không gian \(Oxyz\), cho điểm \(G\left( {1; - 2;3} \right)\) và ba điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\). Biết \(G\) là trọng tâm của của tam giác \(ABC\) thì \(a + b + c\) bằng
Trong không gian \(Oxyz\), cho ba điểm \(M\left( {2; - 3; - 1} \right)\), \(N\left( {0;3;1} \right)\), \(P\left( {1;m - 1;2} \right)\). Với giá trị nào của \(m\) thì tam giác \(MNP\) vuông tại \(N\)?
Trong không gian \(Oxyz\). Cho ba điểm \(A\left( { - 2;3;1} \right)\), \(B\left( {2;1;0} \right)\), \(C\left( { - 3; - 1;1} \right)\). Tìm tất cả các giá trị của tọa độ điểm \(D\) sao cho \(ABCD\) là hình thang có đáy \(AD\) và \({S_{ABCD}} = 3{S_{ABC}}\).
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?
II. Thông hiểu
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = \left( {4; - 5;6} \right)\). Vectơ \(2\overrightarrow u - 3\overrightarrow v \) cùng phương với vectơ nào?