Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15\] m/s thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t\] (m/s2). Tính quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc.
A. 70,5 m.
B. 58,25 m.
C. 67,25 m.
D. 69,75 m.
Đáp án đúng là: D
Ta có: \[a\left( t \right) = {t^2} + 4t\] suy ra \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 4t} \right)} dt = \frac{{{t^3}}}{3} + 2{t^2} + C.\]
Mà \[{v_0} = 15\]m/s nên C = 15.
Do đó, \[v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\].
Quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là
\[s\left( t \right) = \int\limits_0^3 {v\left( t \right)dt} = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right)} dt = 69,75\] m.
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề sai.
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\] và \[f'\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.
Cho hàm số \[y = f\left( x \right)\], \[y = g\left( x \right)\] liên tục trên \[\left[ {a;b} \right]\],\[{\rm{ }}k\] là hằng số . Xét các mệnh đề sau:
a) \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = \int\limits_a^b {f\left( x \right)dx + \int\limits_a^b {g\left( x \right)dx.} } } \]
b) \[\int\limits_a^b {f\left( x \right).g\left( x \right)dx = \int\limits_a^b {f\left( x \right)dx.\int\limits_a^b {g\left( x \right)dx.} } } \]
c) \[\int\limits_a^b {kf\left( x \right)dx = k\int\limits_a^b {f\left( x \right)dx} } .\]
d) \[\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx = \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}} .\]
Số mệnh đề đúng là
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và \[a,b,c \in \mathbb{R}\] thỏa mãn \[a < b < c\]. Trong các mệnh đề dưới đây, mệnh đề đúng là
II. Thông hiểu
Tính \[I = \int\limits_{ - 1}^0 {{{\left( {2x + 3} \right)}^2}dx} \]
Cho \[f\left( x \right) = \left\{ \begin{array}{l}1,{\rm{ }}x \ge 1\\2x - 1,{\rm{ }}x < 1\end{array} \right.\]. Tính giá trị \[I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \]
</>
Cho \[\int\limits_{ - 3}^0 {f\left( x \right)dx = - 4} \] và \[\int\limits_{ - 3}^0 {g\left( x \right)dx = - 3} \]. Xét các mệnh đề sau:
a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = - 7} .\]
b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = 1} .\]
c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = 12} .\]
d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = - 51} .\]
Số mệnh đề đúng trong các mệnh đề trên là
Cho \[f\left( x \right),\] \[g\left( x \right)\] là hai hàm liên tục trên đoạn \[\left[ {1;3} \right]\] thỏa mãn \[\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10,\]\[\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6.\] Tính giá trị \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \]
Biết \[F\left( x \right) = {x^2}\] là một nguyên hàm của hàm số \[f\left( x \right)\]. Giá trị của \[\int\limits_1^3 {\left[ {1 + f\left( x \right)} \right]dx} \] bằng
Cho hàm số \[f\left( x \right)\] nhận giá trị không âm và có đạo hàm liên tục trên \[\mathbb{R}\] thỏa mãn \[f'\left( x \right) = \left( {2x + 1} \right){\left[ {f\left( x \right)} \right]^2},\forall x \in \mathbb{R}\] và \[f\left( 0 \right) = - 1\].
Giá trị của tích phân \[\int\limits_0^1 {\left( {{x^3} - 1} \right)f\left( x \right)dx} \] bằng
I. Nhận biết
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.
Cho \[\int\limits_0^1 {f\left( x \right)dx = - 1} \]; \[\int\limits_0^3 {f\left( x \right)dx = 5} \]. Tính \[\int\limits_1^3 {f\left( x \right)dx} \]
Giá trị của \[I = \int\limits_0^2 {\left| {x - 2} \right|dx} \] bằng