Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

31/10/2024 13

Trong không gian \[Oxyz\], hai đường thẳng \[{d_1}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z - 3}}{1}\] và \[{d_2}:\frac{{x + 5}}{1} = \frac{{y + 3}}{{\sqrt 2 }} = \frac{{z - 5}}{m}\] tạo với nhau góc \[60^\circ \], giá trị của tham số \[m\] bằng

A. \[m = - 1.\]

Đáp án chính xác

B. \[m = 1.\]

C. \[m = \frac{1}{2}.\]

D. \[m = \frac{{\sqrt 3 }}{2}.\]

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[{\overrightarrow u _{{d_1}}} = \left( {1;\sqrt 2 ;1} \right),{\overrightarrow u _{{d_2}}} = \left( {1;\sqrt 2 ;m} \right)\].

Suy ra \[\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {{{\overrightarrow u }_{{d_1}}},{{\overrightarrow u }_{{d_2}}}} \right)} \right| = \frac{{\left| {3 + m} \right|}}{{2.\sqrt {{m^2} + 3} }}\].

Để góc giữa hai đường thẳng bằng \[60^\circ \] thì \[\frac{{\left| {3 + m} \right|}}{{2.\sqrt {{m^2} + 3} }} = \cos 60^\circ \]

\[ \Leftrightarrow \frac{{\left| {3 + m} \right|}}{{2.\sqrt {{m^2} + 3} }} = \frac{1}{2}\]

\[ \Leftrightarrow 2\left| {3 + m} \right| = 2\sqrt {{m^2} + 3} \]

\[ \Leftrightarrow {\left( {m + 3} \right)^2} = \left( {\sqrt {{m^2} + 3} } \right)\]

\[ \Leftrightarrow {m^2} + 6m + 9 = {m^2} + 3\]

\[ \Leftrightarrow 6m + 6 = 0\]

\[ \Leftrightarrow m = - 1.\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho hai mặt phẳng \[\left( P \right):x - y - 6 = 0\] và \[\left( Q \right)\]. Biết rằng điểm \[H\left( {2; - 1; - 2} \right)\] là hình chiếu vuông góc của gốc tọa độ \[O\left( {0;0;0} \right)\] xuống mặt phẳng \[\left( Q \right)\]. Số đo góc giữa hai mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng

Xem đáp án » 31/10/2024 15

Câu 2:

III. Vận dụng

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):3x + 4y + 5z + 2 = 0\] và đường thẳng \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right):x - 2y + 1 = 0\] và \[\left( \beta \right):x - 2y - 3z = 0\]. Hãy tính số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\].

Xem đáp án » 31/10/2024 14

Câu 3:

Tìm tất cả các mặt phẳng \[\left( \alpha \right)\] chứa đường thẳng \[d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{{ - 3}}\] và tạo với mặt phẳng \[\left( P \right):2x - z + 1 = 0\] góc \[45^\circ .\]

Xem đáp án » 31/10/2024 14

Câu 4:

II. Thông hiểu

Cho hai đường thẳng \[{\Delta _1}:\frac{{x - 1}}{3} = \frac{y}{2} = \frac{{z + 1}}{1},{\rm{ }}{\Delta _2}:\frac{x}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 1}}\]. Góc giữa \[{\Delta _1}\] và \[{\Delta _2}\] là

Xem đáp án » 31/10/2024 13

Câu 5:

Hãy tìm giá trị thực của \[m\] để góc giữa hai đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + t\\y = - \sqrt 2 t\\z = 1 + t\end{array} \right.,{\rm{ }}t \in \mathbb{R}\] và \[d':\left\{ \begin{array}{l}x = 1 + t'\\y = - \sqrt 2 t'\\z = 1 + mt'\end{array} \right.,{\rm{ }}t' \in \mathbb{R}\] bằng \[60^\circ .\]

Xem đáp án » 31/10/2024 13

Câu 6:

Trong không gian \[Oxyz\], cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1\\y = 2 - t\\z = 3 + 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + mt.\\z = 2 - t\end{array} \right.\] Tìm \[m\] để cosin góc giữa hai đường thẳng bằng \[\frac{{\sqrt 5 }}{5}.\]

Xem đáp án » 31/10/2024 13

Câu 7:

Trong không gian \[Oxyz\], cho điểm \[A\left( {0;2;2} \right)\]. Góc giữa đường thẳng \[OA\] và trục \[Oy\] bằng

Xem đáp án » 31/10/2024 13

Câu 8:

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):x - y + 2z + 1 = 0\]và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 1}}\]. Xét các mệnh đề sau:

Xem đáp án » 31/10/2024 13

Câu 9:

Trong không gian \[Oxyz\], cho hình chóp \[S.ABC\] có ba điểm \[S\left( {0;0;3} \right)\], \[A\left( {0;0;0} \right)\], \[B\left( {1;0;0} \right)\], \[C\left( {0;2;0} \right)\] và mặt phẳng \[\left( P \right):x + y + z - 3 = 0\]. Xét các mệnh đề sau:

a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[0.\]

b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[\frac{2}{7}.\]

c) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng \[\frac{{10\sqrt 3 }}{{21}}.\]

d) Góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]

Số mệnh đề đúng là

Xem đáp án » 31/10/2024 13

Câu 10:

Tính góc tạo bởi đường thẳng \[d:\frac{{x - 2}}{1} = \frac{{y - 5}}{2} = \frac{{z + 1}}{{ - 1}}\] và mặt phẳng \[\left( \alpha \right):2x + y + z - 1 = 0.\]

Xem đáp án » 31/10/2024 12

Câu 11:

Trong hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y - z - 3 = 0\] và \[\left( Q \right):x - z - 2 = 0\]. Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng

Xem đáp án » 31/10/2024 12

Câu 12:

Trong hệ tọa độ \[Oxyz\], cho ba điểm \[M\left( {1;0;0} \right)\], \[N\left( {0;1;0} \right)\] và \[P\left( {0;0;1} \right)\]. Cosin của góc giữa hai mặt phẳng \[\left( {MNP} \right)\] và \[\left( {Oxy} \right)\] bằng

Xem đáp án » 31/10/2024 12

Câu 13:

Trong không gian \[Oxyz\] cho hình chóp \[S.ABCD\] có \[S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),\]\[A\left( {\frac{a}{2};0;0} \right),\]\[B\left( { - \frac{a}{2};0;0} \right)\], \[C\left( { - \frac{a}{2};a;0} \right)\],\[D\left( {\frac{a}{2};a;0} \right)\] với \[a > 0\]. Tính góc giữa đường thẳng \[SD\] và mặt phẳng \[\left( {SAC} \right)\]. (Kết quả làm tròn đến hàng đơn vị của độ).

Xem đáp án » 31/10/2024 12

Câu 14:

I. Nhận biết

Trong hệ tọa độ \[Oxyz\], góc giữa đường thẳng \[Ox\] và đường thẳng \[Oy\] là

Xem đáp án » 31/10/2024 11

Câu 15:

Trong hệ tọa độ \[Oxyz\], góc giữa đường thẳng \[Ox\] và mặt phẳng \[\left( {Oxy} \right)\] là

Xem đáp án » 31/10/2024 11

Câu hỏi mới nhất

Xem thêm »
Xem thêm »