Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

31/10/2024 8

Tiệm cận đứng của đồ thị hàm số \(y = \frac{x}{{{x^2} - 4x}}\) là

A. \(x = 0.\)

B. \(x = - 4.\)

C. \(x = 0\); \(x = 4.\)

D. \(x = 4.\)

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{{x\left( {x - 4} \right)}} = - \frac{1}{4}\); \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{x}{{x\left( {x - 4} \right)}} = - \frac{1}{4}\).

Do đó x = 0 không là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {4^ + }} y = \mathop {\lim }\limits_{x \to {4^ + }} \frac{x}{{x\left( {x - 4} \right)}} = + \infty \); \(\mathop {\lim }\limits_{x \to {4^ - }} y = \mathop {\lim }\limits_{x \to {4^ - }} \frac{x}{{x\left( {x - 4} \right)}} = - \infty \).

Do đó x = 4 là tiệm cận đứng của đồ thị hàm số.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

II. Thông hiểu

Đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 3}}\) có bao nhiêu đường tiệm cận?

Xem đáp án » 31/10/2024 9

Câu 2:

Viết phương trình các đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 3}}{{2 - x}}\) ?

Xem đáp án » 31/10/2024 9

Câu 3:

I. Nhận biết

Cho hàm số y = f(x) có đồ thị như hình vẽ

Cho hàm số y = f(x) có đồ thị như hình vẽĐồ thị hàm số đã cho có tiệm cận đứng bằng (ảnh 1)

Đồ thị hàm số đã cho có tiệm cận đứng bằng

Xem đáp án » 31/10/2024 9

Câu 4:

Cho đồ thị hàm số y = f(x) có bảng biến thiên xác định như hình. Biết rằng đồ thị hàm số có tiệm cận đứng x = x0, tiệm cận ngang y = y0 và x0y0 = 16. Tìm m.

Cho đồ thị hàm số y = f(x) có bảng biến thiên xác định như hình. Biết rằng đồ thị hàm số có tiệm cận đứng x = x0, tiệm cận ngang y = y0 và x0y0 = 16. Tìm m. (ảnh 1)

Xem đáp án » 31/10/2024 8

Câu 5:

Cho hàm số \(y = \frac{{2x + 1}}{{x - 2}}\). Khẳng định nào dưới đây là đúng?

Xem đáp án » 31/10/2024 8

Câu 6:

Cho hàm số y = f(x) có đồ thị như hình vẽ

Cho hàm số y = f(x) có đồ thị như hình vẽĐồ thị hàm số đã cho có bao nhiêu đường tiệm cận? (ảnh 1)

Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

Xem đáp án » 31/10/2024 8

Câu 7:

Đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số nào dưới đây?

Xem đáp án » 31/10/2024 7

Câu 8:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) có bảng biến thiên như hình bên.

Cho hàm số  y = f ( x )  xác định trên  R  có bảng biến thiên như hình bên.    Số tiệm cận của đồ thị hàm số đã cho là. (ảnh 1)

Số tiệm cận của đồ thị hàm số đã cho là.

Xem đáp án » 31/10/2024 7

Câu 9:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Cho hàm số y = f(x) có bảng biến thiên như sau:Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng (ảnh 1)

Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng

Xem đáp án » 31/10/2024 7

Câu 10:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

Cho hàm số  y = f ( x )  có bảng biến thiên như sau Tổng số đường tiệm cận của đồ thị hàm số  y = f ( x ) là (ảnh 1)

Tổng số đường tiệm cận của đồ thị hàm số \[y = f\left( x \right)\]là

Xem đáp án » 31/10/2024 7

Câu 11:

Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là

Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là (ảnh 1)

Xem đáp án » 31/10/2024 7

Câu 12:

Đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 1 + \frac{3}{{x + 1}}\) là

Xem đáp án » 31/10/2024 7

Câu 13:

Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x + 1}}\) là

Xem đáp án » 31/10/2024 7

Câu 14:

III. Vận dụng

Đồ thị hàm số nào dưới đây có đường tiệm cận ngang qua điểm \(A\left( {2;3} \right)\)

Xem đáp án » 31/10/2024 7

Câu 15:

Cho hàm số y = f(x) có bảng biến thiên

Cho hàm số y = f(x) có bảng biến thiên    Có bao nhiêu giá trị nguyên của m ∈ [−4; 4] để đồ thị hàm số có 4 tiệm cận. (ảnh 1)

Có bao nhiêu giá trị nguyên của m ∈ [−4; 4] để đồ thị hàm số có 4 tiệm cận.

Xem đáp án » 31/10/2024 7

Câu hỏi mới nhất

Xem thêm »
Xem thêm »