II. Thông hiểu
Cho hàm số y = f(x) = ax3 + bx2 + cx + d có bảng biến thiên sau:
Đồ thị nào trong các phương án A, B, C, D thể hiện hàm số y = f(x)?
Hướng dẫn giải
Đáp án đúng là: A
Dựa vào bảng biến thiên, ta thấy:
+) Khi x → +∞ thì y → +∞. Loại C và D.
+) Tọa độ các điểm cực trị là (−1; 2) và (1; −2) nên đáp án A là phù hợp.
Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên dưới.
Mệnh đề nào dưới đây đúng?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?
I. Nhận biết
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Bảng biến thiên trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hàm số \[y = \frac{{ax - b}}{{x - 1}}\] có đồ thị như hình vẽ dưới đây:
Khẳng định nào sau đây đúng?
Biết rằng hàm số y = f(x) = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị là một trong các dạng dưới đây:
Mệnh đề nào sau đây là đúng?
Hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) có bảng biến thiên nào dưới đây. Chọn đáp án đúng?
Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\] có đồ thị như trong hình bên dưới. Biết rằng \[a\] là số thực dương, hỏi trong các số \[b,\,\,c,\,\,d\] có tất cả bao nhiêu số dương?
Trong một môi trường dinh dưỡng có 1000 vi khuẩn được cấy vào. Bằng thực nghiệm xác định được số lượng vi khuẩn tăng theo thời gian bởi qui luật \(N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\) (con vi khuẩn), trong đó t là thời gian (đơn vị giây). Hãy xác định thời điểm sau khi thực hiện cấy vi khuẩn vào, số lượng vi khuẩn tăng lên lớn nhất là bao nhiêu?