Đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số nào dưới đây?
A. \(y = \frac{{x + 2}}{{\left| x \right| - 1}}.\)
B. \(y = \frac{1}{{{x^3} + 1}}.\)
C. \(y = \frac{{ - {x^2} + x + 2}}{{x + 1}}.\)
D. \(y = \frac{2}{{{x^2} + 3x + 2}}.\)
Đáp án đúng là: A
Có \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{ - {x^2} + x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\left( {2 - x} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {2 - x} \right) = 3\); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = 3\).
Do đó đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số \(y = \frac{{ - {x^2} + x + 2}}{{x + 1}}.\)
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng
I. Nhận biết
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có tiệm cận đứng bằng
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
II. Thông hiểu
Đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 3}}\) có bao nhiêu đường tiệm cận?
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) có bảng biến thiên như hình bên.
Số tiệm cận của đồ thị hàm số đã cho là.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau
Tổng số đường tiệm cận của đồ thị hàm số \[y = f\left( x \right)\]là
Tìm tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số \[y = \frac{{3 - x}}{{2x + 5}}\]
Cho hàm số y = f(x) có bảng biến thiên
Có bao nhiêu giá trị nguyên của m ∈ [−4; 4] để đồ thị hàm số có 4 tiệm cận.
Cho đồ thị hàm số y = f(x) có bảng biến thiên xác định như hình. Biết rằng đồ thị hàm số có tiệm cận đứng x = x0, tiệm cận ngang y = y0 và x0y0 = 16. Tìm m.
Viết phương trình các đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 3}}{{2 - x}}\) ?
Đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 1 + \frac{3}{{x + 1}}\) là
Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x + 1}}\) là