Trong không gian với hệ trục \(Oxyz\), cho ba điểm \(A\left( { - 1;2; - 3} \right)\), \(B\left( {1;0;2} \right)\), \(C\left( {x;y;7} \right)\) sao cho \(\overrightarrow {AB} = \overrightarrow {BC} \). Khi đó \(x + y\) bằng
A. \(x + y = 1.\)
B. \(x + y = 17.\)
C. \(x + y = - \frac{{11}}{5}.\)
D. \(x + y = \frac{{11}}{5}.\)
Đáp án đúng là: A
Ta có: \(\overrightarrow {AB} = \left( {2; - 2;5} \right)\), \(\overrightarrow {BC} = \left( {x - 1;y;5} \right)\).
Theo đề, \(\overrightarrow {AB} = \overrightarrow {BC} \) suy ra \(\left\{ \begin{array}{l}x - 1 = 2\\y = - 2\\5 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 2\end{array} \right.\).
Do đó \(x + y = 1.\)
Trong không gian \(Oxyz\), cho \(A\left( {2; - 1;0} \right)\) và \(B\left( {1;1; - 3} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là
Trong không gian với hệ trục \(Oxyz\), cho hai điểm \(A\left( {2;1;1} \right)\), \(B\left( { - 1;2;1} \right)\). Tìm tọa độ của điểm \(A'\) đối xứng với điểm \(A\) qua điểm \(B\) ?
Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A\left( {2;3; - 1} \right)\) trên mặt phẳng \(\left( {Oxz} \right)\) có tọa độ là
III. Vận dụng
Trong không gian với hệ trục \(Oxyz\), cho ba điểm \(A\left( {1;1;1} \right)\), \(B\left( {5; - 1;2} \right)\), \(C\left( {3;2; - 4} \right)\). Tìm tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} = \overrightarrow 0 \).
Trong không gian với hệ trục \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\) nằm trên tia \(Oy\), điểm \(A'\) nằm trên tia \(Oz\). Biết \(AB = 2,AD = 4,AA' = 3\). Gọi tọa độ \(C'\) là \(\left( {a;b;c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = 2a\), \(OC = a\sqrt 2 \). Khi đó vectơ \(\overrightarrow {AB} \left( {m;n;p} \right)\). Khi \(a = 1\) hãy tính giá trị của biểu thức \(T = m + n + p.\)
Trong không gian với hệ trục \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = 2\overrightarrow i + a\overrightarrow j + 6\overrightarrow k \). Tìm giá trị của tham số a để \(\overrightarrow u = \frac{1}{2}\overrightarrow v \).
Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) có tâm \(I\) có tọa độ các đỉnh \(B\left( {3;1;0} \right)\), \(D\left( {0;4; - 6} \right)\). Tọa độ điểm \(I\) là
Trong không gian với hệ trục \(Oxyz\), cho điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 3\overrightarrow i + 5\overrightarrow j - 7\overrightarrow k \). Tìm tọa độ của điểm đối xứng \(M'\) của \(M\) qua mặt phẳng \(\left( {Oxz} \right)\).
Trong không gian với hệ trục \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\). Biết \(A\left( {2;4;0} \right)\), \(B\left( {4;0;0} \right)\), \(C\left( { - 1;4; - 7} \right)\) và \(D'\left( {6;8;10} \right)\). Tìm tọa độ điểm \(B'\).
Trong không gian \(Oxyz\), cho \(M\left( {8;4;3} \right)\). Khi đó:
a) Hình chiếu vuông góc của \(M\) trên trục \(Ox\) là điểm \(\left( {0;4;3} \right)\).
b) Hình chiếu vuông góc của \(M\) trên trục \(Oz\) là điểm \(\left( {0;0;3} \right)\).
c) Hình chiếu vuông góc của \(M\) trên trục \(Oxz\) là điểm \(\left( {8;0;3} \right)\).
d) \(\overrightarrow {OM} = 8\overrightarrow i + 4\overrightarrow j + 3\overrightarrow k .\)
Số mệnh đề đúng trong các mệnh đề trên là:
Ở một sân bay, vị trí của máy bay được xác định bởi điểm \(M\) trong không gian \(Oxyz\) như hình bên. Gọi \(H\) là hình chiếu vuông góc của \(M\) xuống mặt phẳng \(\left( {Oxy} \right)\). Biết \(OM = 70,\left( {\overrightarrow i ,\overrightarrow {OH} } \right) = 64^\circ \), \(\left( {\overrightarrow {OH} ,\overrightarrow {OM} } \right) = 48^\circ \). Tìm tọa độ điểm \(M\).
I. Nhận biết
Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A\left( {3;4;1} \right)\) lên trục \(Ox\) có tọa độ là
Trong không gian \(Oxyz\), cho \(\overrightarrow u = 2\overrightarrow i + \overrightarrow j - \overrightarrow k \). Tọa độ \(\overrightarrow u \) là
II. Thông hiểu
Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) và các đỉnh có tọa độ lần lượt là \(A\left( {3;1;2} \right),B\left( {1;0;1} \right),C\left( {2;3;0} \right)\). Tọa độ đỉnh \(D\) là